期刊文献+

融合运动模型与联合置信度量的改进核相关跟踪算法 被引量:3

An Improved Kernelized Correlation Tracking Algorithm Based on a Joint Confidence Measurement and Motion Model
下载PDF
导出
摘要 红外制导技术是武器制导领域研究的热点和主要方向。针对探测跟踪过程中核相关跟踪算法(Kernelized Correlation Filter,KCF)对快速运动和严重遮挡目标的跟踪精度下降问题,提出一种融合卡尔曼滤波和运动模型的改进核相关目标跟踪算法。该算法首先利用运动模型对目标的位置进行初始估计,提出一种自适应搜索区域选择的方法。针对测试样本的置信度响应图呈现多峰平坦的情况,本文提出了一种用于目标相似度量的组合置信度测量策略,采用相关峰的锐度和置信图的平滑度约束来进一步计算疑似区域的置信度,提升算法的抗干扰能力;同时,本文也提出了一种基于最优置信度的自适应参数更新,增强模型的泛化能力。大量的仿真实验结果表明本文所提的算法的跟踪性能超过传统的核相关跟踪算法,对复杂的跟踪场景具有更强的鲁棒性与抗干扰能力。 Infrared guidance technology is gaining popularity in the field of weapon guidance and has gradually become an important method for precision guidance. A novel improved kernelized correlation tracking algorithm based on Kalman filtering and motion models is proposed to improve tracking accuracy that can deteriorated by fast motion and severe occlusion. First, an adaptive search region location method is proposed, where the optimal position is estimated by the uncertainty theory of the motion model to define the optimal search window. Since the confidence map for the test samples show a multi-peak-flat, a confidence strategy for similarity measurement is also proposed. The confidence of the correlation peak can be calculated using the sharpness of the correlation peak and a smoothness constraint. Finally, the optimal confidence is introduced to obtained an adaptive update model. A large number of simulations show that our proposed algorithm exhibits more robust performance and anti-interference ability than the traditional KCF algorithm.
作者 陈婧 孙玉娟 周万军 CHEN Jing;SUN Yujuan;ZHOU Wanjun(College of Information and Electrical Engineering,Ludong University,Yantai 264000,China;Aeronautical Foundation College,Naval Aeronautics and Astronautics University,Yantai 264001,China)
出处 《红外技术》 CSCD 北大核心 2018年第11期1106-1111,共6页 Infrared Technology
基金 鲁东大学博士科研启动基金项目(LY2013002)
关键词 目标跟踪 卡尔曼滤波 运动模型 核相关跟踪 置信度测量 不确定性理论 object tracking Kalman filter motion model Kernelized correlation tracking confidence measurement uncertainty theory
  • 相关文献

参考文献8

二级参考文献63

  • 1PengNingsong,YangJie,LiuErqi.Model update mechanism for mean-shift tracking[J].Journal of Systems Engineering and Electronics,2005,16(1):52-57. 被引量:3
  • 2ZHOU Q H, LU H CH, YANG M H. Online multiple support instance tracking[J]. IEEE International Conference on Automatic Face and Gesture Recognition and Workshops, 2011,545-552.
  • 3DIETTERICH T G, LATHROP R H, LOZANO-PREZ T. Solving the multiple-instance problem with axis-parallel rectangles[J]. Artificial Intelligence, 1997, 89(1-2): 31-71.
  • 4VIOLA P, PLATT J C, ZHANG C. Multiple instance boosting for object detection[J]. Proc. Neural Information Processing systems, 2005,1417-1426.
  • 5BABENKO B, YANG M, BELONGIE S, Robust object tracking with online multiple instance learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33:1619-1632.
  • 6ZEISL B, LEISTNER C, SAFFARI A, et al.. On-line semi-supervised multiple-instance learning boosting. 2010 IEEE Conference on Computer Vision and Pattern Recognition,2010:1879.
  • 7PAPAGEORGIOU C P, OREN M, POGGIO T. A general framework for object detection [C].Sixth International Conference on Computer Vision, 1998:555-562.
  • 8OZA N. Online Ensemble Learning [D]. Berkeley:University of California, 2001.
  • 9MASON L, BAXTER J, BARTLETT P, et al.. Functional Gradient Techniques for Combining Hypotheses [M]. Cambridge: MIT Press, 2000,221-247.
  • 10KALAL Z, MATAS J, MILKOLAJCZYK K. Online learning of robust object detectors during unstable tracking [C]. OLCV, 2009.

共引文献57

同被引文献12

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部