期刊文献+

民机飞发集成构型中机翼多目标优化设计 被引量:8

Multi-objective wing optimization of civil aircrafts in engine-aircraft integration configuration
下载PDF
导出
摘要 利用超级计算机资源求解雷诺平均N-S方程(RANS),计算评估大量外形方案性能,在可接受的时间周期内完成民机飞发集成构型下机翼多目标优化设计。搭建了集成机翼CST参数化、复杂外形网格变形、快速CFD流场解算和自动后处理等关键环节,用遗传算法全局寻优的优化系统。合理的流程设计使该系统可在"天河2号"超级计算机上同时对数百个方案实施计算评估。在并行计算、加速收敛等技术的综合运用下,使用包含800万单元的多块结构化网格,对NASA CRM (Common Research Model)机翼/机身/短舱/吊挂构型的计算分析可在15min内结束。在3点3目标优化案例中,用90个设计变量表达CRM机翼9个控制剖面的中弧线和扭转角,60h内完成了超过10000个外形方案的计算分析,遗传进化40代。与初始外形相比,PARETO前缘上选择的最优解的各设计点取得了2~10count(1count=阻力系数0.0001)的减阻效果。 Recent effort was presented on multi objective wing shape optimization of NASA Common Research Model (CRM) in wing body nacelle pylon (WBNP) configuration. The performance of a large number of designs was evaluated by solving Reynolds Averaged Navier Stokes (RANS) equations. Parallel computations and supercomputer resources were employed to make the optimization process completed in acceptable time cycle. An automated optimization framework was integrated, which consists of CST based wing parameterization, mesh deformation, flow solving, post processing, and genetic algorithm based global optimization. When running the framework on supercomputer, hundreds of designs can be evaluated at the same time. By using a multi block mesh with 8 million cells, the solution of CRM WBNP configuration can be obtained within 15 minutes with the help of parallel computation and convergence acceleration techniques. In a typical 3 objective optimization application, the evaluation of 128 candidates was carried out simultaneously with computational fluid dynamics on Tianhe 2 supercomputer. Total 90 design variables were used to represent camber line shapes and twist angles of 9 control sections. It took 60 hours to complete the evolution for near 40 generations. The drag reduction of 2 to 10 counts for each objective is achieved comparing with the baseline shape.
作者 薛帮猛 张文升 张志雄 XUE Bangmeng;ZHANG Wensheng;ZHANG Zhixiong(Beijing Key Laboratory of Simulation Technology for Civil Aircraft Design,Beijing Aeronautical Science and Technology Research Institute of COMAC,Beijing 102211,China)
出处 《空气动力学学报》 CSCD 北大核心 2018年第6期941-948,共8页 Acta Aerodynamica Sinica
基金 国家自然科学基金(11402306)
关键词 飞机/发动机集成 多目标优化设计 大规模并行计算 计算流体力学 网格变形 engine aircraft integration multi objective optimization massive parallel computation computational fluid dynamics mesh deformation
  • 相关文献

参考文献6

二级参考文献68

  • 1谭兆光,陈迎春,李杰,张淼.机体/动力装置一体化分析中的动力影响效应数值模拟[J].航空动力学报,2009,24(8):1766-1772. 被引量:39
  • 2沈琼,余雄庆,湛岚.运输机机翼外形和吊舱位置一体化优化方法[J].航空工程进展,2010,1(1):30-35. 被引量:6
  • 3张美红,王志栋.CFD技术在带动力飞机气动设计中的应用[J].民用飞机设计与研究,2004(4):52-55. 被引量:11
  • 4Monsen Erik, Martin Franke. Assessment of advanced transport- equation turbulence models for aircraft aerodynamics performance prediction[J]. AIAA, 1999, 3701.
  • 5Roe P L. Approximate Riemann solvers, parameter vector and difference sche-mes[J]. Journal of Computation Physics, 1981, 43, 357-372.
  • 6Spalart P, Allmaras S. A one-equation turbulence model for aerodynamic flows[J]. AIAA, 1992, 0439.
  • 7Laflin K R, Klausmeyer S M, Zickuhr T. Summary of data from the second AIAA CFD drag prediction workshop[R]. AIAA, 20.
  • 8Guilherme L. Oliveira, Luis Gustavo Trapp, Antonini Puppin-Macedo. Integration methodology for regional jet aircraft with underwing engines[C]. 2003: AIAA- 2003-934.
  • 9Takashi Saitoh, Hyoung Jin Kim, Keizo Takenaka, Kazuhiro Nakahashi. Multi-point design of wing-body-nacelle-pylon configuration[C]//The 24th Applsed Aerodynamics conference. San Francisco, California, 2006: AIAA 2006-3461.
  • 10Koc S, Kim H J, Nakahashi K. Aerodynamic design of complex configurations with junctions. Journal of Air- craft, 2006, 43(6): 1838-1844.

共引文献49

同被引文献72

引证文献8

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部