期刊文献+

L^2 (R^n) boundedness for Calderon commutator with rough variable kernel

L^2 (R^n) boundedness for Calderon commutator with rough variable kernel
原文传递
导出
摘要 For b Е Lip(Rn), the CalderSn commutator with variable kernel is defined by[b,T1]f(x)=p.v∫RnΩ(x,x-y)/|x-y|^n+1(b(x))-b(y))f(y)dy In this paper, we establish the L2(Rn) boundedness for [b, T1] with Ω(x, z') ∈L∞(Rn)×Lq(Sn-1)(q〉2(n-1)/n)satisfying certain cancellation conditions.Moreover, the exponent q 〉2(n - 1)/n is optimal. Our main result improves a previous result of Calderon. For b Е Lip(Rn), the CalderSn commutator with variable kernel is defined by[b,T1]f(x)=p.v∫RnΩ(x,x-y)/|x-y|^n+1(b(x))-b(y))f(y)dy In this paper, we establish the L2(Rn) boundedness for [b, T1] with Ω(x, z') ∈L∞(Rn)×Lq(Sn-1)(q〉2(n-1)/n)satisfying certain cancellation conditions.Moreover, the exponent q 〉2(n - 1)/n is optimal. Our main result improves a previous result of Calderon.
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2018年第5期1013-1031,共19页 中国高等学校学术文摘·数学(英文)
关键词 COMMUTATOR variable kernel spherical harmonics function Fourier transform Commutator variable kernel spherical harmonics function Fourier transform
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部