摘要
在对特定湍流条件下的水平轴潮流能水轮机进行数值模拟时,不同的湍流模型对于计算结果具有一定的影响。为选择合适的湍流模型对所设计水轮机的三维流场进行描述,将采用常用的两方程模型(SSTk-ω与Realizable k-ε)进行数值模拟,得到不同工况下水轮机的性能参数以及水轮机后1.5D处流场的流速、湍流强度分布情况,并进行模型水槽试验,试验值与采用两种湍流模型进行数值模拟得到的仿真值对比表明:在低尖速比工况下,采用SSTk-ω进行数值模拟得到的仿真值比Realizable k-ε更接近试验值,在较高尖速比时,采用Realizable k-ε进行模拟得到的数值更接近试验值;采用两种湍流模型进行数值模拟得到的速度分布具有相似性,但对于湍流强度的预测,SSTk-ω更具有优势。考虑此水轮机的实际工况,选择SSTk-ω湍流模型进行描述更加合理。
During the simulation towards horizontal axis tidal current energy turbine under the specific turbulent conditions, different turbulence models for calculation result has a certain impact. To choose suitable turbulence model for the description of the designed turbine’ three-dimensional flow field, SST k -and Realizable k-ε were adopted to perform simulation, gaining the performance parameter of the turbine, flow velocity at the position of 1.5D after the turbine and turbulence intensity distribution. A model turbine was tested in flume. Comparison between the testing results and the simulation results with the two different turbulence models revealed that the simulation with SST k-turbulence model is more accurate than that with Realizable k-ε turbulence model at the low tip speed ratio, the simulation with Realizable k-ε turbulence model is more accurate than that with SST k-turbulence model at the high tip speed ratio. The velocity distribution gained by numerical simulation with different turbulence models is similar, but for the prediction of turbulence intensity, SST k -has more advantages. Considering the practical operating conditions of the turbine, SST k-turbulence model is more rational.
作者
于晓丽
王树杰
袁鹏
谭俊哲
司先才
YU Xiao-Li;WANG Shu-Jie;YUAN Peng;TAN Jun-Zhe;SI Xian-Cai(College of Engineering,Ocean University of China,Qingdao 266100,China;Ocean Engineering Key Lab of Qingdao,Qingdao 266100,China)
出处
《中国海洋大学学报(自然科学版)》
CAS
CSCD
北大核心
2019年第2期114-120,共7页
Periodical of Ocean University of China
基金
国家自然科学基金项目(51479185)
山东省重点研发计划项目(2015GSF115019)资助~~
关键词
水平轴潮流能水轮机
湍流模型
水动力学性能
流场特性
数值模拟
horizontal axis tidal current energy turbine
turbulence model
hydrodynamic performance
flow field properties
numerical simulation