期刊文献+

图像自动识别技术在行人异常行为检测中的应用

Application of Automatic Image Recognition Technology in Pedestrian Abnormal Behavior Detection
下载PDF
导出
摘要 图像自动识别技术是计算机图像专业的新型研究领域,同时也是饱受人们关注的学术课题。传统监控视频主要是依据肉眼可视分辨,需要消耗大量人力和物力。基于此,提出图像自动识别技术在行人异常行为检测中的应用。通过图像自动识别技术在行人异常行为检测的一般流程,在划定监测区域的前提下,进行信息扫描识别基础上的特征提取,最终将检测信息和追踪信息进行整合。 Automatic image recognition technology is a new research field of computer image specialty, and it is also an academic subject which attracts people's attention. Traditional surveillance video is mainly based on the visual discrimination of the naked eye, which requires a lot of manpower and material resources. Based on this, the application of image automatic recognition technology in the detection of pedestrian abnormal behavior is proposed. Through the automatic process of image recognition, the general process of pedestrian abnormal behavior detection, the premise of delineating the monitoring area, the feature extraction based on information scanning and identification, and finally the integration of detection information and tracking information.
作者 陈纪铭 陈利平 Chen Jiming;Chen Liping(Hunan Institute of Technology,Hengyang Hunan 421002,China)
机构地区 湖南工学院
出处 《信息与电脑》 2018年第22期144-145,共2页 Information & Computer
关键词 图像自动识别技术 行人异常行为 检测 跟踪 automatic image recognition technology pedestrian behavior detection trac
  • 相关文献

参考文献3

二级参考文献21

  • 1刘洁,张东来.关于自适应高斯混合背景模型的更新算法的研究[J].微计算机信息,2006(08S):241-242. 被引量:23
  • 2代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 3褚辉,赖惠成.一种改进的BP神经网络算法及其应用[J].计算机仿真,2007,24(4):75-77. 被引量:53
  • 4GRIMSON W,STAUFFER C,ROMANO R.Using adaptive tracking to classify and monitor activities in a site[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington,DC:IEEE Computer Society,1998:22-31.
  • 5STAUFFER C,GRIMSON W.Adaptive background mixture models for real time tracking[C]// Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition.Fort Collins:IEEE Press,1999,2:246-252.
  • 6STAUFFER C,GRIMSON W.Learning patterns of activity using real-time tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):747-757.
  • 7KAEWTRAKULPONG P,BOWDEN R.An improved adaptive background mixture model for real-time tracking with shadow detection[C]// The 2nd European Workshop on Advanced Video-based Surveillance Systems.Kingston:Kluwer Academic Publishers,2001:149-158.
  • 8POWER P W,SCHOONEES J A.Understanding background mixture models for foregrounds segmentation[C]// Proceedings of Image and Vision Computing.New Zealand:Auckland,2002:267-271.
  • 9LEE D S,HULL J,ERPL B.A Bayesian framework for Gaussian mixture background modeling[C]// Proceedings of IEEE International Conference on Image Processing.New York:IEEE Press,2003:973-976.
  • 10GAO X,BOULT T,COETZEE F.Error analysis of background adaption[C]// Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition.USA:IEEE Press,2000:503-510.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部