期刊文献+

改进的粒子滤波目标跟踪算法 被引量:1

An Improved Particle Filter Target Tracking Algorithm
下载PDF
导出
摘要 针对环境迁移、目标被遮挡或姿态变化较大时传统粒子滤波算法的鲁棒性不强的问题,提出一种改进的粒子滤波目标跟踪算法。建立目标模型时,将目标的HSV颜色特征和Uniform LBP纹理特征进行加权融合;粒子重采样过程中,采用加权随机采样方法,将粒子权值作为重采样的影响因子而非决定因子,以提升粒子多样性,降低粒子衰退对目标跟踪的影响;目标被干扰时,采用卡尔曼滤波对目标位置进行偏移校正,以获取目标正确位置;最后采用模板更新策略对目标模板进行实时更新。实验结果表明:相较于传统粒子滤波算法和CMT算法,本文算法对复杂环境中目标被遮挡和姿态变化的情况下都具有较好的鲁棒性。 Given that the robustness of traditional particle filter algorithm for target tracking was not very good, especially in environment migration, occlusion and pose variation, an improved particle filter target tracking algorithm was proposed. When establishing the target model, the target’s HSV color feature and Uniform LBP texture feature were weighted and fused. In the process of particle resampling, the weighted random sampling method was adopted, considering the particle’ s weight as the impact factor of the resampling rather than determinant in order to magnificently improve the diversity of particles and reduce the adverse effects of particles decay. In the case where the target was disturbed, the Kalman filter was used to offset the target position to obtain the correct position of the target. Finally, the introduction of template updating strategy was combined to update target template. The experimental results showed that compared with the traditional particle filter algorithm and CMT algorithm, the proposed algorithm was robust to occlusion and pose variation in complex environments.
作者 高海 韩洋 GAO Hai;HAN Yang(School of Information Science and Techndogy,Zhejiang Sci-Tech University,Hangzhou 310018,China)
出处 《包装学报》 2018年第5期57-64,共8页 Packaging Journal
关键词 粒子滤波 目标跟踪 特征融合 卡尔曼滤波 模板更新 particle filter target tracking feature fusion Kalman filter template updating
  • 相关文献

参考文献5

二级参考文献32

  • 1叶卓映,耿国桐,吴伟陵.MIMO无线技术研究[J].数据通信,2004(3):6-7. 被引量:7
  • 2郭志滨,曹雪虹.多用户MIMO系统的最佳功率分配策略[J].广东通信技术,2005,25(3):62-65. 被引量:2
  • 3VUCETIC B,SPACE J.Time Coding[M]New York:Wiley,2003:53-60.
  • 4王晓海.空时编码技术[M].北京:机械工业出版社,2004.
  • 5姜永权,刘乃安,沈民奋,杨家玮,王承恕,周渊平.MIMO系统一种新的功率分配算法及容量分析[J].电子学报,2007,35(9):1749-1753. 被引量:5
  • 6Yilmaz A,Javed O,Shah M.Object tracking:A survey[J].Acm Computing Surveys(CSUR),2006,38(4):13-14.
  • 7Zhang K,Zhang L,Yang M H.Real-time compressive tracking[C]//Proceedings of European Conference on Computer Vision,2012.
  • 8Lei Y,Ding X,Wang S.Visual tracker using sequential bayesian learning:Discriminative,generative,and hybrid[J].IEEE Transactions on Systems,Man,and Cybernetics:Part B,Cybernetics,2008,38(6):1578-1591.
  • 9Avidan S.Support vector tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(8):1064-1072.
  • 10Babenko B,Yang M H,Belongie S.Robust object tracking with online multiple instance learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(8):1619-1632.

共引文献173

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部