期刊文献+

神经网络求解一类稀疏优化问题

Neural network for solving a class of optimization problems in sparsity
下载PDF
导出
摘要 利用近年来应用比较广泛的神经网络算法求解了一类在信号还原中具有广泛应用的非Lipschitz约束优化问题.以非光滑分析与最优化理论为基础,发展和推广非Lipschitz稀疏优化问题的基础理论研究及其与图像还原问题的联系,利用光滑化技术以及投影方法构造了一类优化问题的神经网络,由此证明了所构造的神经网络的解是全局存在且一致有界的.还给出了优化模型的稳定点的定义,并证明了所构造的神经网络解轨线的聚点均为稳定点.利用Matlab软件,进行了数值模拟,并验证了所提出的神经网络算法的性能. In this paper, the neural network algorithm was used to solve a class of non - Lips-chitz constrained optimization problems which were widely used in signal reduction. The neu-ral network of optimization problem was constructed by smoothing technique and projection.It was proved that the solution of the constructed neural network was globally existent and u-niformy bounded. In addition, the stationary points of the optimization model are defined. Itwas proved that the accumulation points of the constructed neural network were the stationary points. Finally, the pefformance of the algorithm was verified by numerical simulation.
作者 魏喆 李庆发 边伟 WEI Zhe;LI Qing-fa;BIAN Wei(Department of Mathematics,Heilongjiang Institute of Technology,Harbin 150050,China;Department of Mathematics,Harbin Institute of Technology,Harbin,1500001)
出处 《哈尔滨商业大学学报(自然科学版)》 CAS 2018年第6期741-744,756,共5页 Journal of Harbin University of Commerce:Natural Sciences Edition
关键词 非Lipschitz 约束优化 神经网络 稳定点 广义梯度 光滑函数 non-Lipschitz constrained optimization neural network stationary points gen-eralized-gradient smooth function
  • 相关文献

参考文献3

二级参考文献19

  • 1赵碧蓉,江明辉,沈轶.随机时滞神经网络的全局指数稳定性[J].控制理论与应用,2005,22(5):799-801. 被引量:9
  • 2张越,薛小平.一类延迟细胞神经网络稳定性条件[J].黑龙江大学自然科学学报,2006,23(3):415-417. 被引量:4
  • 3陈武华,卢小梅,李群宏,关治洪.随机Hopfield时滞神经网络均方指数稳定性:LMI方法[J].数学物理学报(A辑),2007,27(1):109-117. 被引量:9
  • 4WAN L, SUN J. Mean square exponential stability of stochastic delayed Hopfield neural networks [ J ]. Physics Letters A, 2005, 343 (4) : 306 -318.
  • 5WANG Zi-dong, SHU Hui-sheng, FANG Jian-an, et al. Robust stability for stochastic Hopfield neural networks with time delays [J]. Nonlin A- nal: Real World Appl, 2006,7(5) : 1119 -1128.
  • 6WANG Zi-dong, LIU Yu-rong, KARL F, et al. Stochastic stability of uncertain Hopfield neural networks with discrete and distributed delays [ J ]. Phys Lett A, 2006,354 (4) :288 -297.
  • 7RUAN S, FILFIL R S. Dynamics of two-neuron system with discrete and distributed delays[ J]. Physica D, 2004,191:323 -342.
  • 8ZHAO H. GLobal asymptotic stability of Hopfield neural network involving distributed delays [ J]. Neural Networks, 2004,17:47 -53.
  • 9BASE A M,THUMMLER V.Local and global stability analysis of an unsupervised competitive neural network[J].IEEE Transactions on Neural Networks,2008,19(2):346-351.
  • 10LIU Y R,WANG Z D,LIU X H.Asymptotic stability for neural networks with mixed time-delays:the discrete-time case[J].Neural Networks,2009,22(1):67-74.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部