期刊文献+

锥度量空间与相关不动点定理研究

Cone Metric Space and the Study of Fixed Point Theorem
下载PDF
导出
摘要 在引进锥的概念下,运用锥诱导出的半序关系,研究锥度量空间中的收敛性、完备性和相关映射的不动点问题.以半序关系下的Banach压缩不动点定理为工具,获得单值映射的不动点和两个单值映射的公共不动点的存在性及唯一性,推广度量空间中的相关不动点定理. By introducing the concept of cone and using the partial order relation induced by cone, the con- vergence, completeness and fixed point problems of correlation mapping in cone metric space are studied. By using the Banach contraction fixed point theorem under the partial order relation as a tool, the existence and uniqueness of the fixed points of single-valued mappings and the common fixed points of two single-valued mappings are obtained, and the related fixed point theorems in metric spaces are generalized.
作者 鞠贵垠 胡多海 孙敏 JU Guiyin;HU Duohai;SUN Min(Department of Applied Mathematics,Nanjing University of Finance and Economics,210046,Nanjing,Jiangsu,China)
出处 《淮北师范大学学报(自然科学版)》 CAS 2018年第4期27-30,共4页 Journal of Huaibei Normal University:Natural Sciences
基金 江苏省研究生科研与实践创新计划项目(KYCX17_1204)
关键词 锥度量空间 不动点 cone cone metric spaces fixed point
  • 相关文献

参考文献2

二级参考文献9

  • 1胡新启,刘启宽.度量空间中反交换映射的公共不动点[J].数学杂志,2007,27(1):19-22. 被引量:13
  • 2Huang, L. G., Zhang, X.: Cone metric spaces and fixed point theorems of contractive mappings. Y. Math. Anal. App., 332, 1468-1476 (2007).
  • 3Ilic, D., Rakocevic, V.: Common fixed points for maps on cone metric space. J. Math. Anal. Appl., 341(2), 876-882 (2008).
  • 4Abbas, M., Jungck, G.: Common fixed point results for noncommuting mappings without continuity in cone metric spaces. J. Math. Anal. Appl., 341(1), 416-420 (2008).
  • 5Xu, H. K.: Diametrically contractive mappings. Bulletin of the Australian Mathematical Society, 70(3), 463-468 (2004).
  • 6Deimling, K.: Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
  • 7Huang L G,Zhang X. Cone Metric Space and fixed point theorems of contractive mappings [ J ]. J Math Anal. Appl, 3007, 332 : 1468 - 1476.
  • 8郭大均.非线性泛函分析[M].济南:山东科学技术出版社,2001..
  • 9吕中学.度量空间中反交换映射的公共不动点[J].应用泛函分析学报,2002,4(3):226-227. 被引量:16

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部