期刊文献+

语言值关联规则挖掘算法 被引量:6

Mining Linguistic Valued Association Rules
下载PDF
导出
摘要 挖掘语言值关联规则是数量型属性关联规则中的一个重要研究内容。已有的语言值关联规则挖掘算法没有充分考虑隶属度的信息,为此改进了语言值关联规则的挖掘算法,此算法能充分考虑隶属度的信息,但算法的效率不高。为了提高挖掘算法的效率,通过引入可变阈值,并提出折衷的语言值关联规则挖掘算法,折衷的算法损失了少量的隶属度信息,但节省了挖掘所需的内存和时间。 Mining linguistic valued association rules is an important issue of quantitative association rules. The information of membership hasn抰 been enough considered in the mining algorithm that we proposed before, so we propose the improved algorithm for mining linguistic valued association rules. In this algorithm we enough consider the information of membership, but the algorithm efficiency is not so high. In order to enhance the efficiency, a variable threshold is introduced and we propose an eclectic algorithm for mining linguistic valued association rules. The eclectic algorithm can save memory and time at the cost of losing few information of membership.
出处 《系统仿真学报》 CAS CSCD 2002年第9期1130-1132,共3页 Journal of System Simulation
基金 国家自然科学基金重点项目(编号 69931040)资助。
关键词 语言值 关联规则 数据挖掘 数量型属性 模糊C-均值算法 数据库 data mining quantitative attributes fuzzy c-means algorithm linguistic valued association rules
  • 相关文献

参考文献4

  • 1Agrawal R, Imielinske T, Swami A. Mining association rules between sets of items in large databases [A]. Proceedings of the ACM SIGMOD International Conference on the Management of Data[C], 1993. 207-216.
  • 2Srikant R, Agrawal R. Mining quantitative association rules in large relational tables [A]. Proceedings of the ACM SIGMOD Interna- tional Conference on the Management of Data [C], 1996. 1-12.
  • 3黄松,陆建江,刘晓明,宋自林.语言值关联规则在气象系统仿真中的应用[J].系统仿真学报,2001,13(4):417-419. 被引量:1
  • 4Hathaway R J, Davenport J W, Bezdek J C. Relational dual of the c-means algorithms [J]. Pattern Recognition, 1989, 22: 205-212.

二级参考文献3

  • 1中国统计局.中国统计年鉴[M].北京:中国统计出版社,1987..
  • 2韩立岩,应用模糊数学,1998年
  • 3中国统计局,中国统计年鉴,1987年

同被引文献44

  • 1Bing Liu, Wynne Hsu, Yiming Ma. Integrating Classification and Association Rule Mining [C]// Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining (KDD'98), New York, USA. Menlo Park, USA: AAAI Press, 1998: 80-86.
  • 2Wenmin Li, Jiawei Han, Jian Pei. CMAR: accurate and efficient classification based on multiple class association rule [C]// Proceedings of the 2001 IEEE International Conference on Data Mining (ICDM'01), San Jose, CA, USA. USA: IEEE, 2001: 369-376.
  • 3F Berzal, J C Cubero, D Sanchez, J M Serrano. ART: A hybrid classification model [J]. Machine Learning (S0885-6125), 2004, 54(1): 67-92.
  • 4Yudho Giri Sucahyo, Raj P Gopalan. Building a more accurate classifier based on strong frequent patterns [C]// Proceedings of 17th Australian Joint Conference on Artificial Intelligence (AI2004), Cairns, Australia. New York, USA: Springer, 2004: 1036-1042.
  • 5G Q Chen, H Y Liu, L Yu, Q Wei, X Zhang. A new approach to classification based on association rule mining [J]. Decision Support Systems (S0167-9236), 2006, 42(2): 674-689.
  • 6F A Thabtah, P I Cowling. A greedy classification algorithm based on association rule [J]. Applied Soft Computing (S1568.-4946), 2007, 7(3): 1102-1111.
  • 7Y C Hu, R S Chen, G H Tzeng. Mining fuzzy association rules for classification problems [J]. Computers & Industrial Engineering (S0360-8352), 2002, 43(4): 735-750.
  • 8J C Bezdek. Pattern Recognition with Fuzzy Objective Algorithms [M]. New York, USA: Plenum Press, 1981.
  • 9J R Quinlan. C4.5: Programs for Machine Learning [M]. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc, 1993.
  • 10R E Fan, P H Chen, C J Lin. Working set selection using second order information for training support vector machines [J]. Journal of Machine Learning Research (S1533-7928), 2005, 6: 1889-1918.

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部