期刊文献+

非线性压电振动能量采集器的振动特性与实验研究 被引量:8

Vibration Performances and Experiments of Nonlinear Piezoelectric Vibration Energy Harvester
下载PDF
导出
摘要 为了提高线性压电振动能量采集器的输出特性,在线性压电振动能量采集器悬臂梁末端引入Duffing非线性磁力,构造了一种双稳态非线性压电振动能量采集器;综合考虑能量采集器的动态振型与轴向应变分布情况,建立了系统非线性机电耦合集总参数运动控制模型,并利用4阶、5阶Runge-Kutta算法对能量采集器的非线性振动特性进行了数值模拟;利用谐波平衡法计算获得了能量采集器的幅频响应方程,数值分析了激励频率、激励幅值以及磁铁间距等对系统非线性振动特性的影响,发现双稳态运动可以极大地提高能量采集器的频率响应范围和能量采集效率,并且能量采集器在低频、低幅值激励情况下可以产生大幅值周期运动;最后,通过实验对数值计算结果进行了验证。 In order to improve the output performances of the linear piezoelectric vibration energy harvester(PVEH),a bistable nonlinear PVEH was developed by adding a Duffing nonlinear magnetic force to a tip end of thelinear PVEH. The governing motion of the nonlinear electromechanical lumped parameter of the bistable PVEH wasderived with considering the dynamic shape and the axial strain of the cantilevered beam of the linear PVEH,a fouror five order Runge-Kutta algorithm was used to analyze the dynamic behaviors. The frequency responding functionwas derived with the resonant balance method;the effects of the exciting frequency,the exciting amplitude and thedistance between the two magnets were numerically studied. The research results have shown that the bistable mo-tion can not only improve the operating frequency wideband and the energy harvesting efficiency,but also easilymake it move in a periodic large-amplitude orbit under a low exciting frequency and amplitude. At last,some experi-ments are carried out to testify the validity of the numerical results.
出处 《传感技术学报》 CAS CSCD 北大核心 2015年第10期1494-1502,共9页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金项目(51277165) 浙江省自然科学基金项目(LY15F010001 Y1080037) 浙江省教育厅项目(Y201223050) 浙江工商大学青年人才计划项目(QY11-23)
关键词 压电能量采集器 非线性振动特性 双稳态行为 Duffing非线性磁力 Piezoelectric energy harvester nonlinear vibration characteristics bistable behavior Duffing nonlinear magnetic force
  • 相关文献

参考文献14

  • 1贾尚帅,孙舒,李明高.基于谐波平衡法的双稳态压电发电系统非线性振动特性研究[J].振动与冲击,2014,33(6):170-173. 被引量:11
  • 2王光庆,金文平,展永政,陆跃明.压电振动能量采集器的力电耦合模型及其功率优化[J].传感技术学报,2013,26(8):1092-1100. 被引量:14
  • 3崔岩,王飞,董维杰,姚明磊,王立鼎.非线性压电式能量采集器[J].光学精密工程,2012,20(12):2737-2743. 被引量:12
  • 4孙舒,曹树谦.双稳态压电悬臂梁发电系统的动力学建模及分析[J].物理学报,2012,61(21):95-106. 被引量:59
  • 5R L Harne,K W Wang.A review of the recent research on vibration energy harvesting via bistable systems[J]. Smart Materials and Structures . 2013 (2)
  • 6A. Erturk,D.J. Inman.Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling[J]. Journal of Sound and Vibration . 2010 (10)
  • 7Samuel C. Stanton,Clark C. McGehee,Brian P. Mann.??Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator(J)Physica D: Nonlinear Phenomena . 2010 (10)
  • 8Marco Ferrari,Vittorio Ferrari,Michele Guizzetti,Bruno Andò,Salvatore Baglio,Carlo Trigona.??Improved Energy Harvesting from Wideband Vibrations by Nonlinear Piezoelectric Converters(J)Procedia Chemistry . 2009 (1)
  • 9B.P. Mann,B.A. Owens.??Investigations of a nonlinear energy harvester with a bistable potential well(J)Journal of Sound and Vibration . 2009 (9)
  • 10Priya S,Inman D J.Energy Harvesting Technologies. Springer . 2009

二级参考文献68

  • 1杜小振,褚金奎,朴相镐,张海军.基于微型悬臂梁的发电机制探索[J].中国机械工程,2005,16(z1):41-43. 被引量:5
  • 2伍晓明,方华军,林建辉,任天令,刘理天.2008功能材料与器件学报,14467.
  • 3Arfieta A E Hagedom P, Erturk A, Inman D J 2010 Appl. Phys. Lett. 97 104102.
  • 4Gammaitoni L, Neri I, Vocca H 2010 Chem. Phys. 375 435.
  • 5Ferrari M, Ferrari V, Guizzetti M Andb B, Baglio S, Trigona C 2010 Sens. Actuators A: Phys. 162 425.
  • 6Erturk A, Inman D J 2011 J. Sound Vib. 330 2339.
  • 7Moon F C, Holmes P J 1979 J. Sound Vib. 65 275.
  • 8Mann B P, Owens B A 2010 J. Sound Vib. 329 1215.
  • 9S Stanton S C, McGehee C C, Mann B P 2010 Physica D 239 640.
  • 10韩权威,李坤,严玲,周金龙,王雨,陈王丽华.2011压电与声光3385.

共引文献116

同被引文献90

  • 1张大踪,杨涛,魏东梅.无线传感器网络低功耗设计综述[J].传感器与微系统,2006,25(5):10-14. 被引量:51
  • 2王佩红,戴旭涵,赵小林.微型电磁式振动能量采集器的研究进展[J].振动与冲击,2007,26(9):94-98. 被引量:31
  • 3Mitcheson P, Yeatman E, Rao G, et al. Energy Harvestin from Hu- man and Machine Motion for Wireless Electronic Devices [ J ]. Pro- ceedings of the IEEE, 2008,96 (9) : 1457-1486.
  • 4Lefeuvre E, Badel A, Richard C, et al. Piezoelectric EnergHarvest- ing Device Optimization by Synchronous Electric Charge Extrac- tion [J]. Journal of Intelligent. Material Systems and Structures, 2005,16: 865-876.
  • 5Lallart M, Garbuio L, Petit L, et al. Double Synchronized Switch Harvesting (DSSH) :A New Energy Harvesting Scheme for Effi- cient Energy Extraction[J]. IEEE Trans Uhrason Ferroelectr Freq Control, 2008,55 (10) : 2119-2129.
  • 6Guyomar D, Lallart M. Recent Progress in Piezoelectric Conver- sion and Energy Harvesting Using Nonlinear Electronic Interfaces and Issues in Small Scale Implementation [J]. Mieromaehines, 2011,2(2) : 274-294.
  • 7Szarka G, Stark B, Burrow S. Review of Power Conditioning for Ki- netic Energy Harvesting Systems [J ]. IEEE Transactions on Power Electronics,2012,27(2) : 803-815.
  • 8Wu Y, Badel A, Formosa F, et al. Piezoelectric Vibration Energy Harvesting by Optimized Synchronous Electric Charge Extraction [J ]. Journal of Intelligent Material Systems and Structures, 2013, 24(12) : 1445-1458.
  • 9Wu Y, Badel A, Formosa F, et al. Self-Powered Optimized Syn-chronous Electric Charge Extraction Circuit for Piezoelectric Ener- gy Harvesting [J]. Journal of Intelligent Material Systems and Structures, 2014,25 (17) : 2165-2176.
  • 10Ramadass Y, Chandrakasan A. An Efficient Piezoelectric Energy Harvesting Interface Circuit Using a Bias-Flip Rectifier and Shared Inductor [J ]. IEEE Journal of Solid-State Circuits, 2010, 45( 1 ) : 189-204.

引证文献8

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部