期刊文献+

基于变步长LMS和SVM的电能表内异物声音识别 被引量:6

Foreign object sound recognition based on variable step size LMS and SVM in energy meter
下载PDF
导出
摘要 提出一种基于变步长最小均方(LMS)和支持向量机(SVM)的电能表内异物声音自动识别方法。由于SVM分类器对噪声敏感,通过变步长LMS实现对采集的电能表内异物声音信号的降噪,相较于固定步长LMS,信噪比提升明显,耗用时间较少。对声音信号进行时、频域和倒谱分析,并提取其短时特征系数及改进梅尔频率倒谱系数(MFCC)。并采用短时能量和MFCC系数构成混合特征矩阵,对该矩阵降维后输入SVM进行异物声音识别。实验证明:提出的方法计算量小、识别率高,有很好的应用价值。 An automatic identification method of foreign object sound in electric energy meter based on variable step size least mean square(LMS)and support vector machine(SVM)is proposed.In consideration of the fact that the SVM classifier is sensitive to noise,noise reduction of the foreign object sound signal in the collected electric energy meter is realized by using the variable step size LMS.Compared with the fixed step length LMS,the signal to noise ratio is improved significantly and the time consumption is reduced.The sound signal is analyzed in time,frequency and cepstrum domain,and its short-term characteristic coefficient and improved Meier frequency cepstrum coefficient(MFCC)coefficient is extracted.The short-time energy and MFCC coefficients are used to form mixed feature matrix,which is input a SVM for foreign object sound recognition after dimension reduction.The experimental results indicate that the method has small computational amount ,high recognition rate,and has good application value.
作者 蒋晓永 杨涛 JIANG Xiao-yong;YANG Tao(School of Information Engineering,Southwest University of Science and Technology,Mianyang 621000,China;Key Laboratory of Sichuan Province for Robot Technology Used for Special Environment,Mianyang 621000,China)
出处 《传感器与微系统》 CSCD 2019年第2期143-146,共4页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(61571376) 特殊环境机器人技术四川省重点实验室开放资助项目(13ZXTK06)
关键词 电能表异物声音 变步长最小均方 短时能量 改进梅尔频率例谱系数 支持向量机识别 electric energy meter foreign object sound variable step size least mean square(LMS) short-time energy improved Meier frequency cepstrum coefficient (MFCC) coefficient support vector machine ( SVM)identification
  • 相关文献

参考文献5

二级参考文献41

  • 1曹亚丽.自适应滤波器中LMS算法的应用[J].仪器仪表学报,2005,26(z2):452-454. 被引量:43
  • 2李眉眉,刘玉生,余义.基于MATLAB的时变系统自适应控制的仿真[J].微计算机信息,2004,20(8):31-32. 被引量:8
  • 3兰瑞明,唐普英.一种新的变步长LMS自适应算法[J].系统工程与电子技术,2005,27(7):1307-1310. 被引量:32
  • 4罗小东,贾振红,王强.一种新的变步长LMS自适应滤波算法[J].电子学报,2006,34(6):1123-1126. 被引量:127
  • 5Vapinkvn. An overview of statistical learning theory [ J ]. IEEE Transactions on Neural Networks, 1999,10 (5) :988 --999.
  • 6Lou Der-chyuan, Liu Chiang-lung, Lin Chin-lin. Message estima- tion for universal steganalysis using multi-classification supportvector machine [ J ]. Computer Standards & Interfaces, 2009, 31 (2) :420 -427.
  • 7Anderson Alvarenga de Moura Meneses, Marcelo Domeilas Mac, ha- do, Roberto Schirru. Particle swarm optimization applied tn the nuclear reload problem of a pressurized water reactor [ J]. Progress in Nuclear Energy,2009,51 (2) :319 -326.
  • 8Sun J, Feng B,Xu W. Particle swarm optimization with particles having quantum behavior[ C ]//Proc of Congress of Ew)lutionary Comoutation, CEC 2004,2004:325 --331.
  • 9Huang Cheng-Lung,Wang Chieh-Jen. A GA-based feature selee- for support vector math hines [ J ]. tion and parameters optimization for. Expert Systems with Applications,2006,31 (2) :231 -240.
  • 10Diniz P S R.Adaptive filtering:Algorithms and practical imple-mentation[M].2nd ed.USA:Spring,2002.

共引文献72

同被引文献59

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部