期刊文献+

只测角单站被动式高精度定位方法 被引量:5

Bearing-Only Measurements Based High-Precision Location with Single Passive Sensor
下载PDF
导出
摘要 讨论了只测角被动式单目标环境下固定发射源的位置可观测性条件 ,并进行理论分析 ,给出定位精度的 Cramer- Rao下界 ,提出以最大化 Fisher信息矩阵行列式为原则来优化侦察机轨迹 ,改善目标的定位精度 .建立解此最优问题的模型 ,研究了利用计算机求解最优轨迹的方法 .基于极大似然估计 ,提出了高精度被动目标定位方法 .仿真结果表明 ,该方法可以显著地提高目标的定位精度 ,并使其逼近 Cramer- The observability condition for single fixed emitter with bearing only measurements was reviewed. The theoretical analysis was done and the Cramer Rao bound of location precision was given. Trajectory of an observer was optimized based on maximizing the Fisher Information Matrix(FIM) determinant to improve the location precision. Then the model solving the optimization problem was developed and the optimized trajectory was found utilizing the computer numerical solution. Finally, a method of high precision location with bearing only measurements and single passive sensor was presented based on a maximum likelihood estimator. The simulation results show that the passive location precision is remarkably improved and the Cramer Rao bound is effectively approximated using the optimal observer trajectories.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2002年第8期1187-1190,共4页 Journal of Shanghai Jiaotong University
基金 航天科技创新基金 上海市科技发展基金资助项目
关键词 定位方法 被动定位 极大似然估计 轨迹优化 定位精度 CRAMER-RAO下界 侦察机 passive location maximum likelihood estimator trajectory optimization
  • 相关文献

参考文献9

  • 1[1]Nardone S C, Aidala V J. Observerability criteria for bearings-only target motion analysis [J]. IEEE Transactions on Aerospace and Electronic Systems,1981,17(2):162-166.
  • 2[2]Fogel E, Gavish M. Nth-order dynamics target observability from angle measurements[J].IEEE Transactions on Aerospace and Electronic Systems,1988,24(3):305-307.
  • 3[3]Hammel S E, Liu P T, Hilliard E J, et al. Optimal observer motion for localization with bearing measurements[J]. Computers & Mathematics with Applications,1989,18(1):171-180.
  • 4[4]Oshman Y,Davidson P. Optimization of observer trajectories for bearings-only target location[J].IEEE Transactions on Aerospace and Electronic Systems,1999,35(3):892-902.
  • 5[5]Gavish M. Effect of bias on bearing-only target location[J].IEEE Transactions on Aerospace and Electronic systems,1990,26(1):22-25.
  • 6[6]Torrieri D J. Statistical theory of passive location systems[J]. IEEE Transactions on Aerospace and Electronic Systems,1984,20(2):183-198.
  • 7[7]Mo Longbin, Xu Yaowei, Zhou Yiyu, et al.Bearings-only location using nonlinear least squares, national aerospace and electronics conference[J].Proceedings of the IEEE,1997,2(7):14-17.
  • 8[8]Spingarn K. Passive position location estimation using the extended Kalman filter[J]. IEEE Transactions on Aerospace and Electronics Systems,1987,23(4):558-567.
  • 9[9]Zeev B. Reliable maximum likelihood algorithm for bearing-only target motion analysis[J]. Proceedings of the IEEE Conference on Decision and Control,1997,5(12):10-12.

同被引文献27

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部