Theory of symmetry for a rotational relativistic Birkhoff system
被引量:3
同被引文献35
-
1张毅,范存新,葛伟宽.Birkhoff系统的一类新型守恒量[J].物理学报,2004,53(11):3644-3647. 被引量:15
-
2许学军,梅凤翔,秦茂昌.Non-Noether conserved quantity constructed by using form invariance for Birkhoffian system[J].Chinese Physics B,2004,13(12):1999-2002. 被引量:7
-
3傅景礼,陈立群,白景华.Localized Lie symmetries and conserved quantities for the finite-degree-of-freedom systems[J].Chinese Physics B,2005,14(1):6-11. 被引量:4
-
4张解放.Vacco动力学的Noether理论[J].应用数学和力学,1993,14(7):635-641. 被引量:8
-
5梅凤翔.Birkhoff系统的Noether理论[J].中国科学(A辑),1993,23(7):709-717. 被引量:43
-
6乔永芬,岳庆文,董永安.广义力学中完整非保守系统的Noether守恒律[J].应用数学和力学,1994,15(9):831-837. 被引量:22
-
7张凯,冯俊.相对论Birkhoff系统的对称性与稳定性[J].物理学报,2005,54(7):2985-2989. 被引量:13
-
8许志新.Birkhoff系统的守恒量与稳定性[J].物理学报,2005,54(10):4971-4973. 被引量:13
-
9梅凤翔,江铁强,解加芳.A symmetry and a conserved quantity for the Birkhoff system[J].Chinese Physics B,2006,15(8):1678-1681. 被引量:11
-
10张鹏玉,方建会.变质量Birkhoff系统的Lie对称性和非Noether守恒量[J].物理学报,2006,55(8):3813-3816. 被引量:10
引证文献3
-
1解加芳,吴润衡,张竺,邹杰涛,李国富.Weak Noether symmetry and conserved laws of Birkhoffian systems[J].Journal of Beijing Institute of Technology,2012,21(1):8-12.
-
2梅凤翔,崔金超,吴惠彬.Birkhoff系统的梯度表示和分数维梯度表示[J].北京理工大学学报,2012,32(12):1298-1300. 被引量:18
-
3梅凤翔.关于Noether定理——分析力学札记之三十[J].力学与实践,2020,42(1):66-74. 被引量:6
二级引证文献24
-
1葛伟宽,薛纭,楼智美.完整力学系统的广义梯度表示[J].物理学报,2014,63(11):10-12. 被引量:6
-
2章婷婷,陈向炜.判定非自治Birkhoff系统稳定性的广义组合梯度方法[J].力学季刊,2018,39(4):771-777. 被引量:2
-
3Fengxiang MEI,Jinchao CUI.Skew-gradient representations of constrained mechanical systems[J].Applied Mathematics and Mechanics(English Edition),2015,36(7):873-882. 被引量:2
-
4梅凤翔,吴惠彬.Birkhoff系统的广义斜梯度表示[J].动力学与控制学报,2015,13(5):329-331. 被引量:9
-
5李彦敏,梅凤翔.非自治Birkhoff系统的广义斜梯度表示[J].云南大学学报(自然科学版),2015,37(6):832-836. 被引量:7
-
6张毅.一类非自治Birkhoff系统的梯度表示[J].苏州科技学院学报(自然科学版),2015,32(4):1-3. 被引量:9
-
7祖启航,朱建青,张毅.一类非自治Birkhoff系统的分数维梯度表示[J].商丘师范学院学报,2015,31(12):30-33. 被引量:2
-
8李彦敏,陈向炜,吴惠彬,梅凤翔.广义Birkhoff系统的两类广义梯度表示[J].物理学报,2016,65(8):1-4. 被引量:12
-
9梅凤翔,吴惠彬,李彦敏.Nielsen方程的两类广义梯度表示[J].北京大学学报(自然科学版),2016,52(4):588-591. 被引量:7
-
10Fengxiang Mei,Huibin Wu.Gradient systems and mechanical systems[J].Acta Mechanica Sinica,2016,32(5):935-940. 被引量:1
-
1白洁.一种新的对称性及其与Noether对称的关系[J].北京理工大学学报,1995,15(4):359-362.
-
2梅凤翔,水小平.Lagrange系统的弱Noether对称性[J].北京理工大学学报,2006,26(4):285-287. 被引量:4
-
3罗绍凯.FORM INVARIANCE AND NOETHER SYMMETRICAL CONSERVED QUANTITY OF RELATIVISTIC BIRKHOFFIAN SYSTEMS[J].Applied Mathematics and Mechanics(English Edition),2003,24(4):468-478.
-
4梅凤翔.二阶非完整系统的Lie对称与Noether对称[J].江西科学,1997,15(4):199-204. 被引量:8
-
5LUO Shao-Kai.Form Invariance and Noether Symmetries of Rotational Relativistic Birkhoff Systems[J].Communications in Theoretical Physics,2002(9):257-260. 被引量:2
-
6吴惠彬.A new conserved quantity of mechanical systems with differential constraints[J].Chinese Physics B,2004,13(5):589-591. 被引量:1
-
7张宏彬,陈立群,顾书龙,柳传长.The discrete variational principle and the first integrals of Birkhoff systems*[J].Chinese Physics B,2007,16(3):582-587. 被引量:5
-
8楼智英.The construction of conserved quantities for linearly coupled oscillators and study of symmetries about the conserved quantities[J].Chinese Physics B,2007,16(5):1182-1185. 被引量:3
-
9乔永芬,赵淑红,李仁杰,乔永芬,赵淑红,李仁杰.Form invariance and conserved quantities of Nielsen equations of relativistic variable mass nonholonomic systems[J].Chinese Physics B,2004,13(3):292-296. 被引量:3
-
10傅景礼,陈立群,谢凤萍.Form Invariance, Noether and Lie Symmetry of Non-conservative Hamiltonian Systems in Phase Space[J].Journal of Shanghai University(English Edition),2004,8(3):252-257.
;