摘要
考虑了 Kantorovich-Vertesi有理插值型算子 L*n,s( f,X,x)对 Lp[- 1 ,1 ]( 1≤ p≤∞ )空间函数逼近的 Jackson型估计 .并获得了如下逼近阶 :‖ L*n,s( f,X,x) -f( x)‖Lp[- 1,1] ≤ Cp,sω f ,1n + 2 Lp[- 1,1]( s>2 )
The paper investigates approximation by rational interpolation operator in L p [-1,1] (1≤p≤∞ )space and proves the following results: if f∈L p [-1,1] (1≤p≤∞),L n,s (f,X,x) is the Kantorovich\|Vertesi rational interpolation operator on \%f(x)\%,then‖L * [n,s] (f,X,x)-f(x)‖ L\+\+p\-\-\{\\} ≤C p,s ωf,1n+2 L\+\+p\-\-\{\\} \ s>2.
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
2002年第3期329-334,共6页
Applied Mathematics A Journal of Chinese Universities(Ser.A)