期刊文献+

网格的渐进几何压缩 被引量:6

Progressive Geometry Compression for Meshes
下载PDF
导出
摘要 提出一种渐进几何压缩算法.通过对简化算法的改进,网格模型由基网格及多组顶点分裂操作序列表达.当从一层网格向下一层精网格细化时,该组顶点分裂操作序列中的分裂操作顺序是任意的.因此,改进的渐进网格表示可改变每组顶点分裂操作的排序,实现高效率编码.设计了Laplacian几何预测器,通过相邻顶点来预测新增顶点位置,并对位置校正值进行量化及Huffman编码.实验结果表明,该算法可获得高压缩比,适合几何模型的网络渐进传输. A progressive geometry compression scheme is presented in this paper. In this scheme, a mesh is represented as a base mesh followed by some groups of vertex split operations using an improved simplification method, in which each level of the mesh can be refined into the next level by carrying out a group of vertex split operations in any order. Consequently, the PM representation can be effectively encoded by permuting the vertex split operations in each group. Meanwhile, a Laplacian geometry predicator is designed to predict each new vertex position using its neighbors. The correction is quantized and encoded using Huffman coding scheme. Experimental results show that the algorithm can obtain higher compression ratios than the previous work. It is very suitable for progressive transmission of geometry models over Internet.
出处 《软件学报》 EI CSCD 北大核心 2002年第9期1804-1812,共9页 Journal of Software
基金 国家自然科学基金资助项目(60133020 60021201 69925204)~~
关键词 网格 渐进几何压缩 三角网格 流形曲面 CAD 计算机动画系统 triangular mesh geometry compression manifold surface progressive mesh
  • 相关文献

参考文献18

  • 1Deering, M. Geometry compression. In: Robert, C., ed. Proceedings of the SIGGRAPH'95. Los Angeles: ACM Press, 1995. 13~20.
  • 2Chow, M. Optimized geometry compression for real-time graphics. In: Proceedings of the IEEE Visualization'97. 1997. 346~354. http://home.earthlink.net/~mmchow/gcompiler/gcompiler.html.
  • 3Taubin, G., Rossignac, J. Geometric compression through topological surgery. ACM Transactions on Graphics, 1998,17(2):84~115.
  • 4Touma, C., Gotsman, C. Triangle mesh compression. In: Proceedings of the Graphics Interface'98. Vancouver, 1998. 26~34. http://www.graphicsinterface.org/proceedings/1998/.
  • 5Taubin, G., Horn, W., Lazarus, F., et al. Geometric coding and VRML. In: Proceedings of IEEE Special Issue on Multimedia Signal Processing. 1998. 1228~1243. http://www.gvu.gatech.edu/~jarek/papers/vrml.pdf.
  • 6Taubin, G., Rossignac, J. 3D geometric compression. In: SIGGRAPH'98 Course Notes 21. New York: ACM Press, 1998.
  • 7Gumhold, S., Strasser, W. Real time compression of triangle mesh connectivity. In: Cohen, M., Zettzer, D., eds. Proceedings of the SIGGRAPH'98. New York: ACM Press, 1998. 133~140.
  • 8Li, J., Kuo, C.C. A dual graph approach to 3D triangular mesh compression. In: Proceedings of the IEEE International Conference on Image Processing. 1998. http://www.cs.technion.ac.il/~ronir/courses/advancedTopics/pubs/.
  • 9Rossignac, J. Edgebreaker: Connectivity compression for triangle meshes. IEEE Transactions on Visualization and Computer Graphics, 1999,5(1):47~61.
  • 10Bajaj, C., Pascucci, V., Zhuang, G. Single resolution compression of arbitrary triangular meshes with properties. In: Proceedings of the Data Compression Conference. 1999. 247~256. http://www.ticam.utexas.edu/reports/1999/9905.ps.gz.

同被引文献36

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部