期刊文献+

关于强平坦序左S-系是I-正则系的序幺半群

Pomonoids over which all strongly flat left S-posets are I-regular
原文传递
导出
摘要 设S是序幺半群。证明了所有强平坦的序左S-系是I-正则的当且仅当S是左PSF且左半完全的序幺半群,亦等价于S是左PP序幺半群且满足性质(FP_2)。此外,给出了关于每个I-正则序左S-系满足条件(P)的序幺半群的刻画。 Let S be a pomonoid. All strongly flat left S-posets are I-regular if and only if S is a left PSF and left semiperfect pomonoid are presented. It is also equivalent with S is a left PP pomonoid,and satisfying property( FP_2). Furthermore,pomonoids over which every I-regular left S-poset satisfying Condition( P) are characterized.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2016年第8期35-38,共4页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(11461060)
关键词 序S-系 强平坦 I-正则 S-poset strongly flat I-regular
  • 相关文献

参考文献1

二级参考文献12

  • 1WANG Ning, LIU Zhong-kui. Monoids over which aJl strongly fiat left acts are regular [J]. Comm. Algebra, 1998, 26(6): 1863-1866.
  • 2KILP M.On monoids over which all strongly fiat cyclic right acts are projective [J]. Semigroup Forum, 1996,52: 241-245.
  • 3STENSTROM B. Flatness and Localization over monoids [J]. Math. Nachr., 1971, 48: 315-334.
  • 4KNAUER U. Projectivity of acts and Morita equivalence ofmonoids [J]. Semigroup Forum, 1972, 3: 359-370.
  • 5BULMAN-FLEMING S, NORMAK P. Monoids over which all fiat cyclic right acts are strongly fiat [J]. Semigroup Forum, 1995, 50: 233-241.
  • 6KNAUER U. Characterization of Monoids by Properties of Finitely Cenerated Right Acts and Their Right Ideals [M]. Lecture Notes in Math., 998, Springer, Berlin, 1983.
  • 7KILP M,KNAUER U. Characterization of monoids by properties of regular acts [J]. J. Pure Appl. Algebra, 1987, 46: 217-231.
  • 8TRNLAM H. Characterization of monoids by regular acts [J]. Period. Math. Hungar, 1985, 16: 273-279.
  • 9KNAUER U, MIKHALEV A V. Wreath products of acts over monoids. I. Regular and inverse acts [J]. J. Pure Appl. Algebra, 1988, 51: 251-260.
  • 10LIU Zhong-kui, YANG Yong-bao. Monoids over which every fiat right act satisfies condition (P) [J]. Comm. Algebra, 1994, 22(8): 2861-2875.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部