摘要
证明了具有n(>2)个左(右)零因子的环R,当|R|=n22时,必有n=2s+1(s∈N),|R|=22s+1,且R的特征是2,4或8.又当R是特征为2的可换环时,R只能是有4个零因子的8元环.
This parer proved that for the ring R with n left(right) zero divisors, if |R|=n 22 ,then n=2 s+1 (n∈N),|R|=2 2s+1 and the character of R could only be 2,4 or 8;and if R is the commutative ring whose character is 2, then R could only be the 8 element ring with 4 zero divisors.
出处
《天津师范大学学报(自然科学版)》
CAS
1999年第1期11-15,共5页
Journal of Tianjin Normal University:Natural Science Edition
关键词
左(右)零因子
左(右)正则元
非零因子环
幂零根
left(right) zero divisor\ left(right) regulor element\ nonzero divisor ring\ nilpotent root