摘要
证明了一类测地球体积呈多项式增长的完备非紧Riemann流形关于Laplace算子的本性谱是 [0 ,+∞ ) ,同时也讨论了测地球体积以其半径的负幂次收敛于有限体积的完备Riemann流形上的本性谱 .
In the paper the essential spectrum of the Laplacian on some kind of the complete Riemannian manifolds such that the grouth of volume of the geodesic ball is according as the polynomiat of its radius,is computed,and the similar problem of some kind of complete Riemannian manifold with finite volume is also discussed.
出处
《同济大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2002年第8期1019-1022,共4页
Journal of Tongji University:Natural Science