摘要
In winter, the confined pig house of northern China is severe. The environment variables are nonlinear, time-varying and coupled, which seriously affect the health of pigs and the qualities of the meat. In order to solve the problem multi-variables coupling, a multi-variables decoupled fuzzy logic control method was proposed. Two fuzzy logic controllers were designed based on fuzzy logic theory. The fans, heaters and humidifiers were used to control temperature, humidity and ammonia. The reductions of temperature and humidity caused by ventilating were compensated by heaters and humidifiers respectively which realized the multivariables decoupling. The proposed methods were validated through theoretical, experimental and simulation analysis. The results suggested that the methods were able to regulate the confined pig house environment effectively. In addition, comparing to the manual regulation, the proposed methods could reduce 19% power consumption as well.
In winter, the confined pig house of northern China is severe. The environment variables are nonlinear, time-varying and coupled, which seriously affect the health of pigs and the qualities of the meat. In order to solve the problem multi-variables coupling, a multi-variables decoupled fuzzy logic control method was proposed. Two fuzzy logic controllers were designed based on fuzzy logic theory. The fans, heaters and humidifiers were used to control temperature, humidity and ammonia. The reductions of temperature and humidity caused by ventilating were compensated by heaters and humidifiers respectively which realized the multivariables decoupling. The proposed methods were validated through theoretical, experimental and simulation analysis. The results suggested that the methods were able to regulate the confined pig house environment effectively. In addition, comparing to the manual regulation, the proposed methods could reduce 19% power consumption as well.
基金
Supported by the 13th Five-year National Key R&D Program(2016YFD0700204-02)
the"Young Talents"Project of Northeast Agricultural University(17QC20,17QC19)
the Earmarked Fund for China Agriculture Research System(CARS-35)