摘要
提出了基于不确定网络理论的主动配电网扩展规划模型。首先,考虑负荷与分布式电源出力时间分区相关性,构建特征概率不确定性集合;其次,建立统筹分布式电源、网架、静止无功补偿装置、变电站和有载调压变压器各设备的升级新建及其主动管理措施的经济子规划模型,并提出了适用于规划问题的两阶段整体最优可靠性方法,且通过二阶锥松弛将原模型转化为混合整数二阶锥规划问题进行快速求解。分别得到全过程多阶段经济和综合可靠性不确定性测度分布作为网架树权重。最后,利用不确定网络中最小生成树理论,搜索与理想网架树分布最接近的最优规划方案。改进的IEEE 33节点系统与IEEE 69节点系统算例验证了所提模型的有效性。
An expansion planning model of active distribution network based on uncertain network theory is proposed.Firstly,the probabilistic uncertainty set of characteristics is determined considering the time correlation between load and distributed generator output.Secondly,the economical sub-planning model is proposed to coordinate the upgrade,new-built and active distribution management of the equipment,including distributed generator,network,static var compensation(SVC)device,substation and on-load tap changer(OLTC).The two-stage global optimal reliability method used for planning problem is put forward.To solve the proposed model quickly,the second order cone(SOC)relaxation algorithm is applied to transform the original models into mixed integer second order cone programming(SOCP)problems.The multi-stage uncertainty measurement distributions of economy and comprehensive reliability are obtained,which are taken as the weights of the network tree.Finally,the optimal planning scheme which is closest to the distribution of ideal network tree is searched by the minimum spanning tree theory in uncertain networks.The effectiveness of the proposed model is validated by the modified IEEE 33-bus system and IEEE 69-bus system.
作者
李燕
胡志坚
仉梦林
谢仕炜
何瑞江
LI Yan;HU Zhijian;ZHANG Menglin;XIE Shiwei;HE Ruijiang(School of Electrical Engineering,Wuhan University,Wuhan 430072,China;State Key Laboratory of Advanced Electromagnetic Engineering and Technology,Huazhong University of Science and Technology,Wuhan 430074,China)
出处
《电力系统自动化》
EI
CSCD
北大核心
2019年第16期68-82,共15页
Automation of Electric Power Systems
基金
高等学校博士学科点专项科研基金资助项目(20110141110032)~~
关键词
不确定网络
主动配电网
二阶锥规划
两阶段可靠性
uncertain network
active distribution network
second order cone programming
two-stage reliability