期刊文献+

基于矩不变量和神经网络的飞机识别模型 被引量:1

Plane Recognition Based on Moment Invariants and Neural Networks
下载PDF
导出
摘要 该文提出了一种飞机识别的方法,采用轮廓追踪法去除大部分干扰项;用矩不变量的方法描述飞机的特征;对标准Bp网络算法进行改进,使网络训练快速,误差小,从而使整个系统具有识别过程迅速、稳定、准确率高的特点。 This paper provides a kind of method to recognize plane.This method use contour tracking to eliminate much noise.And then,it use moment invariants to describe the feature of the plane.At last,this paper adopts Bp neural networks as its classifier.It has changed the standard Bp neural networks,making it training faster and decreasing residual,to make the whole recognition system recognize faster,more stable and more accurate.
机构地区 中国地质大学
出处 《电脑知识与技术(过刊)》 2009年第5X期3771-3772,3778,共3页 Computer Knowledge and Technology
关键词 轮廓追踪 矩不变量 BP神经网络 contour tracking moment invariants BP neural networks
  • 相关文献

参考文献2

二级参考文献9

  • 1Chen Z,Patbern Recognit,1991年,24卷,5期,375页
  • 2Hu M K,IEEE Trans Inf Theor,1962年,8卷,179页
  • 3Bezed J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. New York :Plenum,1981.
  • 4Olson C F, Huttenlocher D P. Automatic target recognition by matching oriented edge pixels[J].IEEE Image Processing,1997,6(1)103-113.
  • 5Azzouzs E E, Nandi A K. Automatic identification of digital Modulation Tyoes[J]. Signal Processing,1995,47(1):55-69.
  • 6Reiss T H. The Revise Fundamental Theorem of Moment Invariants[J]. IEEE Trans Pattern Analysis Math Intel,1991,13:830-833.
  • 7王静儒,吴岷,杨光正.基于知识的人面器官边缘检测及特征抽取[J].模式识别与人工智能,1999,12(3):340-346. 被引量:7
  • 8周杰,卢春雨,张长水,李衍达.人脸自动识别方法综述[J].电子学报,2000,28(4):102-106. 被引量:156
  • 9陈松灿,伍艳莲.图像的模糊识别方法研究与实现[J].电子学报,2000,28(11):50-54. 被引量:18

共引文献15

同被引文献13

  • 1RIZVI S A, NASRABADI N M. Fusion techniques for automatic target recognition [C]// Proceedings of 2003 IEEE Applied Ima- gery Pattern Recognition Workshop. Washington D. C.: IEEE, 2003 : 27-32.
  • 2QIN Xianxiang, ZHOU Shilin, GAO Gui. A CFAR detection algorithm for generalized Gamma distributed background in high- resolution SAR images [J]. IEEE geoscience and remote sen- sing letters, 2013, 10(4) : 806-810.
  • 3MENG Wanjing, JU Tao, ~U Hongyun. CFAR and KPCA for SAR image target detection [C]// Proceedings of 2010 3rd Inter- national Congress on Image and Signal Processing. [S.1.]: IEEE, 2010: 1832-1835.
  • 4DIETTERICH T G. Ensemble methods in machine learning [C]// Proceedings of 2000 ACM First International Workshop on Multiple Classifier Systems. Cagliari: ACM, 2000: 1-15.
  • 5LIU Haicang, LI Shutao. Decision fusion of sparse representa- tion and support vector machine for SAR image target recogni- tion [J]. Neurocomputing, 2013, 113: 97-104.
  • 6FILIPPIDIS A, JAIN L C, MARTIN N. Fusion of intelligent agents for the detection of aircraft in SAR images [J]. IEEE transactions on pattern analysis and machine intelligence, 2000, 22(4): 378-384.
  • 7DRUCKER H, CORTES C, JACKEL L D, et al. Boosting and other ensemble methods [J]. Neural computation, 1994, 6 (6) : 1289-1301.
  • 8BI Y, GUAN J, BELL D. The combination of multiple classi- fiers using an evidential reasoning approach [J]. Artificial in- telligence, 2008, 172(15) : 1731-1751.
  • 9侯一民,伦向敏.基于矩与角点特征的飞机目标识别[J].计算机工程与应用,2008,44(16):179-181. 被引量:17
  • 10王义敏,秦永元,安锦文.基于特征向量的SAR图像目标识别方法研究[J].计算机工程与应用,2008,44(30):186-188. 被引量:5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部