期刊文献+

基于小波分析的小型无人机目标显著性检测方法 被引量:2

Saliency detection method for small unmanned aerial vehicle based on wavelet analysis
原文传递
导出
摘要 在目标自动识别系统中,采用显著性检测方法可以迅速地将注意力集中在感兴趣目标上,同时忽略周围背景信息的干扰,实现目标的快速精确定位。为解决叶簇等复杂背景下所提取的显著区域存在边缘模糊和抗噪能力差的问题,提出一种基于小波分析的小型无人机目标显著性检测方法。通过对比CIE XYZ和Lab色彩空间模型与不同小波函数对检测结果的影响,利用小波逆变换在X、Y、Z分量上分别重构产生多幅特征图,并应用sym2小波进行显著图解算,论述了显著性检测方法的性能评价指标。实验结果表明,sym2小波能够实现叶簇背景下无人机目标显著区域的有效检测。 Saliency detection methods are used in automatic targets recognition system can quickly focus on interest object and ignore the interference of surrounding background,to locate targets fast and accurately.A saliency detection method for small unmanned aerial vehicle based on wavelet analysis is presented,to solve the edge blur and poor antinoise ability of saliency region extracted from complex background such as leafage.Effects of saliency detection results in CIE XYZ and Lab color space,and different wavelet functions are contrasted.Multiple feature maps are created on X、Y、Zcomponents in reconstruction process using inverse wavelet transform,and sym2 wavelet is adopted to calculate saliency maps.The performance evaluation indexes of saliency detection method are discussed.The result shows sym2 wavelet can effectively detect the saliency region of unmanned aerial vehicle in leaf cluster background.
作者 任永平 张维光 李鹏涛 张彤 蒋琪 Ren Yongping;Zhang Weiguang;Li Pengtao;Zhang Tong;Jiang Qi(School of Optoelectronic Engineering,Xi’an Technological University,Xi’an 710021,China)
出处 《电子测量技术》 2018年第24期56-61,共6页 Electronic Measurement Technology
基金 国家自然科学基金青年基金项目(61701385) 陕西省光电测试与仪器技术重点实验室开放基金(2016SZSJ-60-2)项目资助
关键词 无人机识别 显著性检测 小波分析 XYZ色彩空间 unmanned aerial vehicle recognition saliency detection wavelet analysis XYZcolor space
  • 相关文献

参考文献9

二级参考文献110

  • 1邵静,高隽.基于协同感知的视觉选择注意计算模型[J].中国图象图形学报,2008,13(1):129-136. 被引量:7
  • 2ITII L, KOCH C, NIEBUR E. A model of saliency- based visual attention for rapid scene analysis[ J]. IEEE Transactions un pattern analysis and machine intelli- gence, 1998, 20( 11) : 1254-1259.
  • 3tlAREI, J, KOCIt C,PERONA P. Graph-based visual sa- liency [J]. Adwmces in Neural lntbrmation Processing Systems, 2007, 19 : 545-552.
  • 4GOFERMAN S, ZELNIK-MANOR L, TAL A. Context- aware saliency detection [ J ]. Pattern Analysis and Ma- chine Intelligence, IEEE Transactions on, 2012, 34(10) : 1915-1926.
  • 5ACIIANTA R, HEMAMI S, ESTRADA F. Frequency- fulled salienl region detection [ C ]. CVPR, 2009: 1597-1604.
  • 6GOPAI,AKRISHNAN V, HU Y, RAJAN D. Ran- dom walks on graphs for salienl object detection in images[J]. Image Processing, IEEE Transactions on, 2010, 19(12) : 3232-:5242.
  • 7ACItANTA B, SIIAJI A, SMITH K, et al. SIJC super- pixels compared to state-of-the-art superpixel melhods [J]. Pattern Analysis and Machine Intelligence, IEEE Transae, tions on, 2012, 34( 11 ) : 2274-2282.
  • 8KLEIN D A, FRINTROP S. Salient pattern deteclion using W 2 on multivariate normal distributions[ M ] Pat- Berlin tteidelberg, 2012:246-255.
  • 9JIAN(; tl, WANG J, YUAN Z, et al. Automatic salient object segmentation based on context and shape prior [C].BMVC,2011, 3(4): 7.
  • 10CHRIS H, MIKE S, A combined corner and edge detec- tor [ C]. 4th Alvey Vision Conference, 1988 : 147-151.

共引文献95

同被引文献24

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部