期刊文献+

基于LM算法的用户窃漏电行为预测 被引量:4

Prediction of user leakage behavior based on LM algorithm
原文传递
导出
摘要 针对某电力系统的用户窃漏电行为进行数据挖掘,利用LM神经网络算法建立评价模型。首先对预处理后的数据进行数据变换,得到用来表征用户窃漏电行为的评价指标,其次基于LM算法建立了用户窃漏电行为预测的评价模型,实现对用户窃漏电行为的监测,并且与分类回归树算法(CART)进行对比,利用ROC曲线评价方法进行评估,用随机森林(RF)和支持向量机(SVM)算法进行了实验验证,实验结果表明,相对于CART、RF、SVM算法,基于LM神经网络的用户窃漏电检测系统得到更高得预测准确率。 A Levenberg-Marquardt(LM)neural network method is used to establish a model for data mining in which users are aware of electrical leakage behaviors.Lagrange interpolation method was used to interpolate the original data,and data was transformed to obtain new evaluation indicators to characterize the law of burglary leakage behavior.Based on the LM neural network,a comprehensive evaluation model of user burglary leakage behavior was established to achieve burglary.The effective recognition of the behavior is compared with the CART decision tree algorithm.The ROC curve evaluation method is used for evaluation,and the experimental results are verified by RF and SVM algorithms.The experimental results show that compared with the CART、RF、SVM algorithm,the user sniffer leakage detection system based on LM neural network obtains higher prediction accuracy.
作者 赵文仓 陈聪聪 郑鸿磊 Zhao Wencang;Chen Congcong;Zheng Honglei(College of Automation and Electronics Engineering,Qingdao University of Science & Technology,Qingdao 266061,China)
出处 《电子测量技术》 2018年第24期119-122,共4页 Electronic Measurement Technology
基金 国家自然科学基金(61171131) 山东省重点研发计划(2013YD01033)项目资助
关键词 LM神经网络 CART决策树 窃漏电行为预测 ROC曲线 LM neural network CART decision tree identification of stealing electricity ROC curve
  • 相关文献

参考文献12

二级参考文献99

  • 1周瑾.窃电与防窃电[J].福建电力与电工,2004,24(3):70-72. 被引量:6
  • 2张春明,许心.防窃电系统的应用[J].高电压技术,2005,31(8):88-89. 被引量:13
  • 3林卫星,张惠娣,刘士荣,钱积新.应用粒子群优化算法辨识Hammerstein模型[J].仪器仪表学报,2006,27(1):75-79. 被引量:22
  • 4李方方,赵英凯,贾玉莹.基于粒子群优化算法的神经网络在油品质量预测中的应用[J].计算机应用,2006,26(5):1122-1124. 被引量:11
  • 5杨学兵,张俊.决策树算法及其核心技术[J].计算机技术与发展,2007,17(1):43-45. 被引量:88
  • 6Wang Wanliang,Ren Min.Soft-sensing method for wastewater treat- ment based on BP neural network[J].Intelligent Control and Au- tomation, 2002,3 : 2330-2332.
  • 7Sipocza N,Tobiesenb F A,Assadia M.The use of artificial neu- ral network models for CO2 capture plants[J].Applied Energy, 2011,88(7) : 2368-2376.
  • 8Vogl T P,Mangis J K,Rigler W T,et al.Accelerating the conver- gence of the back propagation method[J].Boil Cybernetics, 1998, 59:257-261.
  • 9Guclu D, Yilmaz N, Ozkan-Yucel U G.Application of neural net- work prediction model to full-scale anaerobic sludge digestion[J]. Journal of Chemical Technology and Biotechnology, 2011,86 (5) : 691-698.
  • 10Kiran T R, Rajput S P S.An effectiveness model for an Indirect Evaporative Cooling (IEC) system: comparison of Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS)and Fuzzy Inference System(FIS) approach[J].Applied Soft Com- puting Journal, 2011,11 (4) : 3525-3533.

共引文献274

同被引文献48

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部