期刊文献+

基于卷积神经网络的车道线语义分割算法 被引量:19

Laneline semantic segmentation algorithm based on convolutional neural network
原文传递
导出
摘要 针对车道线检测环境复杂,光照变化复杂等特点,提出了一种新型车道线检测方法。首先运用可变形卷积神经网络提取特征,然后通过对白天、夜晚、雨天等复杂光照条件下的KITTI道路数据集进行联合训练,端到端获取车道线上下文信息。建立结构化道路车道线网络模型,进而对车道线进行图像语义分割,并判断车道线类型。该模型预测车道线像素所属的场景语义类别,实现车道线实时检测。实验结果表明,该方法具有较好的准确性和实时性,在多场景结构化道路上的车道线识别率可达96.83%。 Aiming at the complexities of environment and light of laneline detection,a new method for laneline detection is proposed.Firstly,the deformable convolution neural network is used to extract the laneline feature. Secondly,joint training of KITTI road data sets under complex light conditions such as daytime,night and rainy day to get end-to-end context lane information. Finally,the laneline network model of structural road was established to distinguish the laneline type and semantically segment the laneline. This model can predict the scene semantic category of laneline pixels and detect the laneline in real time. Experimental results show the proposed method has good accuracy and real-time performance,with the laneline recognition rate of the proposed method being 96.83% in the multi scene of structured road.
出处 《电子测量与仪器学报》 CSCD 北大核心 2018年第7期89-94,共6页 Journal of Electronic Measurement and Instrumentation
关键词 语义分割 车道线特征 卷积神经网络 结构化道路 网络模型 semantic segmentation lane feature convolutional neural network structured road network model
  • 相关文献

参考文献2

二级参考文献27

  • 1张荣,王勇,杨榕.TM图像中道路目标识别方法的研究[J].遥感学报,2005,9(2):220-224. 被引量:26
  • 2王荣本,余天洪,郭烈,顾柏园.基于机器视觉的车道偏离警告系统研究综述[J].汽车工程,2005,27(4):463-466. 被引量:42
  • 3Lee Joon Wong. A machine vision system for lane departure detection [J], Computer Vision and Image Understanding ,2002,86( 1 ) :52 - 78.
  • 4Kwon Woong, Lee Jae-Won, Shin Dongmok, et al. Experiments on decision making strategies for a lane departure warning system [C]//International Conference on Robotics & Automation. Detroit, USA, 1999:2596 - 2601.
  • 5Risack R, Mohler N, Enkelmann W. A video-based lane keeping assistant [ C ]//IEEE Intelligent Vehicles Symposium. Dearborn, USA ,2000:356 - 361.
  • 6Jung Claudio Rosito, Kelber Christian Roberto. A lane departure warning system using lateral offset with uncalibrated camera [ C ]//IEEE Conference on Intelligent Transportation Systems. Vienna, Austria, 2005 : 102 - 107.
  • 7An Xiangjing, Wu Mo, He Hangen. A novel approach to provide lane departure warning using only one forward-looking camera[C ]//International Symposium on Collaborative Technologies and Systems. Las Vegas, USA,2006:356 - 362.
  • 8Freeman W, Adelsom E H. The design and use of steerable filters [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991,13 (9) : 891 - 906.
  • 9Jeffrey D, Anthony G. Autonomous Driving--a Practical Roadmap [J]. SAE Technical Paper, 2010-01-2335, 2010.
  • 10Hsiao P, Yeh C, Huang S, et al. A Portable Vi- sion-based Real-time Lane Departure Warning Sys- tem Day and Night[J]. IEEE Transactions on Ve- hicular Technology, 2009, 58(4).. 2089-2094.

共引文献26

同被引文献185

引证文献19

二级引证文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部