期刊文献+

消除椒盐噪声的基于纹理特征的决策滤波 被引量:8

Texture features based decision filter for removing salt and pepper noise
原文传递
导出
摘要 图像中椒盐噪声的有效去除,取决于噪声检测和噪声灰度估测的准确性,但现有的滤波算法在噪声检测和噪声灰度估测上的准确性不高。因此,提出了基于图像纹理特征的决策滤波算法。算法根据椒盐噪声的灰度最值特征和独立性,以及图像纹理的特征进行噪声检测,将噪声与信号像素准确地区分开。算法根据纹理中像素灰度的平滑变化特征,将邻域中的信号像素进行分组,然后基于相关性与正态概率分布的意义,取与邻域均值最接近的分组的中值作为噪声像素的估测值。实验的结果证明,所提出的算法检测噪声更加准确,其去噪结果对应的峰值信噪比(PSNR)比现有的算法平均提高1.9 dB以上,图像增强因子(IEF)比现有的算法平均提高119以上。因此,相对于现有的算法,所提出的算法在去噪性能上具有显著的优越性。 The effectiveness of salt and pepper noise removal lies on the noise detection and the intensity estimation of noisy pixel,but existing filters show low performance for them.In view of this problem,a decision filter based on image texture features is proposed.The proposed method performs noise detection by taking full advantage of the characteristics of salt and pepper noise,i.e.,the noise takes extreme intensity values and is independent on noise free pixels,as well as the texture features of image,thus,correctly discriminates the noisy pixels from the noise free pixels.Based on the varied intensity of image texture,the proposed method groups the neighbor noise free pixels,in the light of correlation and significance of normal probability distribution,it takes the median of the group,which is closest to the mean of neighbor noise free pixels;as the intensity of noisy pixel.The experimental results show that,the proposed method can perform a more accurate noise detection compared with the existing filters,it resulted that PSNR increases averagely by more than 1.9 dB,IEF increases averagely by more than 119.Thus,it can conclude that the denoising performance of the proposed method is superior to the existing filters.
作者 陈家益 战荫伟 曹会英 董梦艺 Chen Jiayi;Zhan Yinwei;Cao Huiying;Dong Mengyi(School of Information Engineering,Guangdong Medical University,Zhanjiang,524023,China;School of Computer Science and Technology,Guangdong University of Technology,Guangzhou 510006,China;Second Clinical Medical College,Southern Medical University,Guangzhou 510515,China)
出处 《电子测量与仪器学报》 CSCD 北大核心 2019年第3期126-135,共10页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金(61170320) 广东省自然科学基金(2015A030310178) 广东省科技计划(2017B010110015) 广州市科技计划(201604016034) 广东省医学科研基金(B2018190) 湛江市科技攻关计划(2017B01142) 广东医科大学科研基金(GDMUM201815 GDMUM201827)资助项目
关键词 图像去噪 噪声检测 中值滤波 灰度最值 纹理特征 决策滤波 image denoising noise detection median filter extreme intensity values texture feature decision filter
  • 相关文献

参考文献8

二级参考文献98

  • 1张光玉,解梅,马争.一种新的彩色图像边缘检测算法[J].电子科技大学学报,2005,34(2):164-167. 被引量:10
  • 2张良培,王毅,李平湘.基于各向异性扩散的SAR图像斑点噪声滤波算法[J].电子学报,2006,34(12):2250-2254. 被引量:14
  • 3GONZALEZ R C, WOODS R E. Digital image process- ing[M]. Boston: Addision-Wesley: 2002.
  • 4BROWNRIGG D. The weighted median filter[J]. Com- munications of the ACM, 1984, 27(8): 807-818.
  • 5HWANG H, HADDAD R A. Adaptive median filters: new algorithms and results[J]. IEEE Transactions on Image Processing, 1995, 4(4): 499-502.
  • 6NAIR M S, REJI J. An efficient directional weighted me- dian switching filter for impulse noise removal in medical images[C]. Advances in Computing and Communications, Kochi, India, 2011: 276-288.
  • 7ADHINARAYANAN V, SHEEBHA S P, SRIRAMAN L, et al. A modified algorithm for removal of salt and pepper noise in color images[C]. Intelligent Systems Modelling and Simulation, Kota Kinabalu, Malaysia, 2012: 356-361.
  • 8DING Qiuqi,SONG Haijun,GENG Wenjian,et al.Image denoising algorithm using neighborhood characteristics and cycle spinning[J].IEEE Computer Society,2011,25(3):614-617.
  • 9TOH K K V, ISA N A M. Noise adaptive fuzzy switching median filter for salt-and-pepper noise reduction [ J ]. Signal Processing Letters, IEEE, 2010, 17(3).. 281-284.
  • 10ARCO J E, GORRIZ J M, RAMIREZ J, et al. Digital image analysis for automatic ennmeration of malaria para- sites using morphological operations [ J ]. Expert Systems with Applications, 2015, 42(6): 3041-3047.

共引文献98

同被引文献101

引证文献8

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部