期刊文献+

数据挖掘技术在目标识别中的应用研究 被引量:3

Data Mining Technique and Its Applications in Target Recognition
下载PDF
导出
摘要 提出了基于数据挖掘技术的水中目标识别方法。藉助提取目标噪声特征量及模式识别算法 ,研究了三类目标的特征量提取与选择 ,实现了相同工作情况下的目标聚类分析。 This paper deals with the underwater target recognition approach based on data mining technique. By means of target characteristic abstraction and optimum selection, the paper completed the clustering analysis of three kinds of targets at the same ambient background situation,and the recognition result is satisfactory for practical use.
作者 田娜 王海燕
出处 《探测与控制学报》 CSCD 北大核心 2002年第3期33-35,共3页 Journal of Detection & Control
关键词 数据挖掘技术 目标识别 特征提取 聚类分析 DM data mining target recognition features extraction and selection clustering analysis
  • 相关文献

参考文献4

  • 1Chen Mingsyan, Han Jiawei, Philip S Yu. Data Mi-ning: An overview from a database perspective[J]. IEEE Transactions on Knowledge and Data Engineering, 1996,8(6):866-881.
  • 2Shen Weimin, Leng Bing. A Metapattern- Based Automated Discovery Loop for Integrated Data Ming-Unsupervised Learning of Relational[J]. IEEE Transactions on knowledge and Data Engineering 1996,8(6):898-910.
  • 3Han Jiawei, Micheline Kambr. DATA Mining Concepts and Techniques[M]. Beijing: Higher Education Press&Morgan Kaufmann Publishers Patterns, 2001.
  • 4杨军亚,畅雄杰,孙军.数据挖掘技术的一个应用模型[J].现代电子技术,2000,23(6):41-42. 被引量:3

共引文献2

同被引文献17

  • 1明冬萍,骆剑承,沈占锋,汪闽,盛昊.高分辨率遥感影像信息提取与目标识别技术研究[J].测绘科学,2005,30(3):18-20. 被引量:108
  • 2张东洋,王凤山,董传昌.巡航导弹目标识别及来袭路线预测[J].弹箭与制导学报,2007,27(2):253-254. 被引量:1
  • 3O. C. Ozcanli, B. B. Kimia. Generic object recognition via shock patch fragments[A], in BMVC'07, pp. 1030-1039, Warwick Print, 2007.
  • 4Thomas Serre, Lior Wolf, Stanley Bileschi, Maximilian Riesenhuber, Tomaso Poggio. Robust Object Recognition with Cortex-Like Mechanisms[A]. Proceeding of IEEE TRANSACTIONS ON PA33"ERN ANALYSIS AND MACHINE INTELLIGENCE, VOL 29, NO. 3, MARCH 2007.
  • 5Paul Baumstarck, Sukwon Chung, Andrew Y. Ng. Peripheral-foveal vision for real-time object[A], recognition and tracking in video. In IJCAI, 2007.
  • 6Marcin Marsza_ek and Cordelia Schmid. Semantic Hierarchies for Visual Object Recognition [A]. Proceding of in the IEEE conference on computer vision and pattern recognition, Jun 2007.
  • 7J. Ponce, T. L. Berg, M. Everingham, D. A. Forsyth, M. Hebert, S. Lazebnik, M. Marszalek, C. Schmid, B. C. Russell, A. Torralba, C. K. I. Williams, J. Zhang,A. Zisserman. Dataset Issues in Object Recognition [J]. In Toward Category-Level Object Recognition.Springer-Verlag Lecture Notes in Computer Science, J. Ponce, M. Hebert, C. Schmid, and A. Zisserman (eds.), 2006. In press.
  • 8David G. Lowe. Object Recognition from Local Scale-invariant Features[A].International Conference on Computer Vision, Corfu, Greece (September 1999), pp. 1150-1157.
  • 9Pedro F. Felzenszwalb and Daniel P. Huttenlocher Pictorial Structures for Object Recognition [J],International Journal of Computer Vision, Vol. 61, No. 1, January 2005.
  • 10鄢余武.分布异质传感器下的神经网络集成目标识别法[J].弹箭与制导学报,2007,27(3):269-271. 被引量:1

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部