期刊文献+

压应力对各向同性细颗粒石墨热膨胀系数的影响 被引量:3

Effects of Compressive Stresses on Coefficient of Thermal Expansion of Fine-Grained Isotropic Graphite
下载PDF
导出
摘要 采用应变电测法测定了IG-11石墨在不同压应力下的热膨胀系数,研究了压应力对石墨热膨胀系数的影响。不同压缩载荷下的实验结果表明,压应力增大了平行于加载方向的热膨胀系数,并减小了垂直于加载方向的热膨胀系数。同时,随着载荷的不断增加,热膨胀系数的绝对变化量不断增大。此外,卸载后残余应变的存在也对热膨胀系数产生了类似的影响。 The strain gauge method was used to measure the coefficient of thermal expansion (CTE) of graphite IG-11 under different compressive loads, and the relationship between compressive stresses and the CTE was analyzed. The experimental results show that compressive stresses increase the CTE parallel to the loading direction and decrease the CTE perpendicular to the loading direction, and the absolute changes increase with increasing applied load. In addition, the residual strain after unloading affects the CTE similarly.
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2009年第S2期268-270,共3页 Atomic Energy Science and Technology
基金 国家自然科学基金资助项目(10602029 20070003030) 高等学校博士学科点专项科研基金资助项目(20070003030)
关键词 石墨 热膨胀系数 压应力 应变计 高温气冷堆 graphite coefficient of thermal expansion compressive stress strain gauge high-temperature gas-cooled reactor
  • 相关文献

参考文献5

  • 1HART P E.The effect of pre-stressing on thethermal expansion and Young’s modulus ofgraphite[].Carbon.1971
  • 2LUO X,YU S,SHENG X,et al.Temperatureeffect on IG-11 graphite wear performance[].Nuclear Engineer The.2005
  • 3Measurement of thermal expansion coefficientusing strain gages,Vishay micro-measurements[R/EB]. http:∥www.vishay.com . 2007
  • 4S.D. Preston and B.J. Marsden.Changes in the coefficient of thermal expansion in stressed Gilsocarbon graphite[].Carbon.2006
  • 5I. William Gazda.Variations in CTE as a function of prestressing[].Carbon.1970

同被引文献31

  • 1E Fermi. Experimental production of a divergent chain re- action [J]. Am J Phys, 1952, 20: 536-558.
  • 2R Moormann. AVR prototype pebble bed reactor: a safety reevaluation of its operation and consequences for future reactors [J]. Kerntechnik, 2009, 74(1-2): 8-21.
  • 3雒晓卫,喻新利,于溯源.高温气冷堆用石墨材料的氧化性能研究[J].核动力工程,2007,28(5):50-53. 被引量:11
  • 4Nightingale R E. Nuclear graphite [M]. New York, London. Academic Press, 1962 : 329-342.
  • 5Gray W J. Constant stress irradiation-induced compressive creep of graphite at high uences [J]. Carbon, 1973 (11): 383-392.
  • 6Gazda W I. Variation in CTE as a function of pre-stressing [J]. Carbon, 1970, 8(4):511-515.
  • 7Hart P E. The effect of pre-stressing on the thermal expan- sion and Young's modulus of graphite[J]. Carbon, 1971, 10 (2):233-234.
  • 8Preston S D, Marsden B J. Changes in the coefficient of thermal expansion in stressed Gilsocarbon graphite[J]. Car- bon, 2006, 44 (7): 1250-1257.
  • 9Hongtao Wang, Xiangwen Zhou, Libin Sun, et al. The ef- fect of stress levels on the coefficient of thermal expansion of a fine-grained isotropic nuclear graphite[J]. Nuclear En- gineering and Design, 2009, 239:484-489.
  • 10Xiangwen Zhou, Hongtao Wang, Suyuan Yu. Anisotropy of coefficient of thermal expansion of nuclear graphite under compressive stresses [J]. Nuclear Engineering and Design, 2011, 247:752-754.

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部