期刊文献+

非线性方程x +Tx =f的带误差的Mann迭代解(英文)

Mann Iteration Process with Errors for the Solution of the Nonlinear Equation x+Tx=f
下载PDF
导出
摘要 在一致光滑的Banach空间中 ,研究了含k 次增生算子T的方程x+Tx =f的迭代解 .这里T在D(T)上 ,既不必是增生的 ,也不必是连续的 (因而也不必是Lipschitz的 ) .因此 ,推广了一些已知的结果 . In this paper, the iterative solution is studied for the equation x+Tx=f with a k subaccretive operator T in a uniformly smooth Banach spaces. Where the T is neither necessarily accretive nor continuous (therefore nor Lipschitzian) on D(T). Some well known results are generalized.
作者 徐承璋
机构地区 渝西学院数学系
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第5期652-657,共6页 Journal of Southwest China Normal University(Natural Science Edition)
关键词 Mann迭代解 一致光滑BANACH空间 非线性方程 K-次增生算子 误差 非线性泛函分析 uniformly smooth Banach space nonlinear equation k subaccretive operator Mann iteration process with errors
  • 相关文献

参考文献1

二级参考文献12

  • 1ZHULiang.Iterativesolutionofnonlinearequationsinvolvingm-accretiveoperatorsinBanachspaces[J].JMathAnalAppl,1994,188:410~416. Receiveddate:1999-12-16
  • 2BarbuV.NonlinearSemigroupsandDifferentialEquationsinBanachSpaces[M].Noordhoff,Leyden,Netherlands,1976.
  • 3BrowderFE.NonlinearmonotoneandaccretiveoperatorsinBanachspaces[R].ProcNatAcadSciU.S.A,1968,61:388~393.
  • 4RockafellarRT.Localboundednessofnonlinearmonotoneoperators[J].MichiganMathJ,1969,16:397~407.
  • 5ChidumeCE.AnapproximationmethodformonotoneLipschitzianoperatorsinHilbertspaces[J].JAustralMathSoc(seriesA),1986,41:59~63.
  • 6ChidumeCE.Theiterativesolutionoftheequationf=x+TxforamonotoneoperatorTinLpspace[J].JMathAnalAppl,1986,166:531~537.
  • 7DotsonWG.AniterativeprocessfornonlinearmonotonicnonexpansiveoperatorsinHilbertspace[J].MathComp,1978,32:223~225.
  • 8BruckRE,JR.Theiterativesolutionoftheequationy=x+TxforamonotoneoperatorTinHilbertspace[J].BullAmerMathSoc,1973,79:1258~1262.
  • 9ZhenHe.Thefixedpointfornonexpansivemappinganditerativeconvergence[J].JEnqiMath,1990,7:67~71(InChinese).
  • 10WENGXinlong.Fixedpointinterationforlocalstrictlypseudocontractivemapping[J].ProcAmerMathSoc,1991,113:727~731.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部