摘要
在一致光滑的Banach空间中 ,研究了含k 次增生算子T的方程x+Tx =f的迭代解 .这里T在D(T)上 ,既不必是增生的 ,也不必是连续的 (因而也不必是Lipschitz的 ) .因此 ,推广了一些已知的结果 .
In this paper, the iterative solution is studied for the equation x+Tx=f with a k subaccretive operator T in a uniformly smooth Banach spaces. Where the T is neither necessarily accretive nor continuous (therefore nor Lipschitzian) on D(T). Some well known results are generalized.
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2002年第5期652-657,共6页
Journal of Southwest China Normal University(Natural Science Edition)