期刊文献+

基于双谱的齿轮故障特征提取与识别 被引量:33

Bispectrum Based Gear Fault Feature Extraction and Diagnosis
下载PDF
导出
摘要 在引入双谱、双相干谱和人工神经网络的基本理论之后 ,深入研究了汽车变速箱齿轮振动信号的双谱和双相干谱特征以及频率间的耦合情况 ,形成故障特征向量 ,并利用 BP人工神经网络 ,成功地将齿轮正常信号、磨损信号和断齿信号进行了分类。研究表明 ,对于齿轮振动信号 ,双谱比双相干谱更利于故障特征提取 ,不同状态下的齿轮振动信号中均存在二次相位耦合现象 ,但是耦合的形式不同 ,同时也表明 。 Bispectral analysis is emerging as a new powerful technique in signal processing, offering insight into non linear coupling between frequencies and having potential applications in many areas where traditional power spectral analysis provides insufficient information. In this paper, a new method based on bispectrum and artificial neural network for feature extraction and fault diagnosis of gearbox vibration signal is developed. Different gear faults can be identified successfully using this approach. Experimental results show that: (1)the bispectrum has an advantage over the bicoherence for feature extraction, (2)the quadratic phase coupling exists in all of the gear fault conditions, but distinct in kind, (3)the fault diagnostic methodology based on bispectrum and artificial neural network is effective.
出处 《振动工程学报》 EI CSCD 北大核心 2002年第3期354-358,共5页 Journal of Vibration Engineering
关键词 故障诊断 双谱 特征提取 人工神经网络 齿轮故障 fault diagnosis bispectrum feature extraction artificial neural network
  • 相关文献

参考文献7

二级参考文献25

共引文献253

同被引文献255

引证文献33

二级引证文献229

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部