ASYMPTOTIC PROPERTIES OF MLE FOR WEIBULL DISTRIBUTION WITH GROUPED DATA
ASYMPTOTIC PROPERTIES OF MLE FOR WEIBULLDISTRIBUTION WITH GROUPED DATA
摘要
Abstract. A grouped data model for Weibull distribution is considered. Under mild con-ditions, the maximum likelihood estimators(MLE) are shown to be identifiable, stronglyconsistent, asymptotically normal, and satisfy the law of iterated logarithm. Newton iter-ation algorithm is also considered, which converges to the unique solution of the likelihoodequation. Moreover, we extend these results to a random case.
基金
the National Natural Science Foundation of China
参考文献7
-
1Kaitai Fang and Jianlun Xu,Statistical Distribution,Science Publishing House,223-235,1987.
-
2Lawless,J.F.,Statistical Modets and Methods for Lifetime Data,John Wiley & Sons,Inc,1982.
-
3Jiading Chen,The Introduction of Survival Analysis and Reliability,75-78,Anhui Education Publishing House,1993.
-
4K. F. Cheng and C. H. Chen, Estimation of the Weibull parameters with grouped data, Commun Stat. Theory Meth., 1988, 17: 325-341.
-
5T. Makelainen, K. Schmidt, and G. P. H. Styan, On the existence and uniqueness of the maximum likelihood estimate of a vector-valued parameter in fixed-size samples, Ann. Stat., 1981, 9: 758-767.
-
6Ping Cheng, Xiru Chen, Guijing Chen and Chuanyi Wu, Parameter Estimation, 305-307, Shanghai Scientific Technique Publishing House, 1985.
-
7Guochen Feng, Iteration Methods for Solving .Systems of Nonlinear Equations, Shanghai Scientific Technique Publishing House, 1989.
-
1吴建国.随机过程W_n的渐近特性[J].数学理论与应用,2006,26(2):97-99.
-
2王立洪.带有相依样本的随机规划问题的渐近性态[J].应用数学学报,1999,22(1):78-83.
-
3ZHAO Ruiqing College of Mechanical Engineering, Shijiazhuang 050003 LIU Baoding Department of Applied Mathematics, Tsinghua University, Beijing 100084.A Genetic Algorithm for Estimations of Parameters under Partial Order Restrictions[J].Systems Science and Systems Engineering,1997,7(3):107-115.
-
4杨庆怡,贾靖.量子态制备过程中压缩效应的渐近特性[J].广西科学,2009,16(3):280-282.
-
5张渝.On a max-type difference equation[J].Journal of Chongqing University,2006,5(1):27-29.
-
6张晓勤.三参数Weibulldistribution场合下定数截尾矩估计[J].青海师范大学学报(自然科学版),2004,20(2):13-14.
-
7陈传峰,黎培兴.二阶中立型线性泛函微分方程非振动解的渐近性[J].中山大学研究生学刊(自然科学与医学版),1994,15(1):10-15. 被引量:1
-
8刘国范.A SHORTCUT CALCULATION METHOD FOR SPECTRUM TERMS OF EQUIVALENT CONFIGURATION[J].Chinese Science Bulletin,1985,30(8).
-
9刘艳芹,马军海,蒋晓芸.一类径向对称的多分数阶非线性扩散方程及其解[J].山东大学学报(理学版),2009,44(12):64-66.
-
10郑忠国,蒋继明.L-M法置信下限的渐近特性[J].应用概率统计,1992,8(4):403-410. 被引量:2