期刊文献+

二维板材切割下料问题的一种确定性算法 被引量:9

A Deterministic Algorithm for Solving the Problem of Two-Dimensional Sheet Cutting Stock
下载PDF
导出
摘要 研究二维板材切割下料问题,即使用最少板材切割出一定数量的若干种矩形件。提出一种结合背包算法和线性规划算法的确定性求解算法。首先构造生成均匀条带四块排样方式的背包算法;然后采用线性规划算法迭代调用上述背包算法,每次均根据生产成本最小原则改善目标函数并修正各种矩形件的当前价值,按照当前价值生成新的排样方式;最后选择最优的一组排样方式组成排样方案。采用基准测题,将该算法与著名的T型下料算法进行比较,实验结果表明,该算法比T型下料算法更能节省板材,计算时间能够满足实际应用需要。 This paper discusses the two dimensional sheet cutting stock problem, that is, use the leastnumber of sheets to cut out a certain number of rectangular pieces. A deterministic algorithm isproposed which based on the combination of knapsack algorithm and linear programming algorithm.First, a knapsack algorithm is constructed to generates the four blocks uniform strip pattern, then thelinear programming algorithm is used to generate the cutting plans which iteratively calls the aboveknapsack algorithm to improve the objective function based on the principle of minimum productioncost and changes the current value of punched items to generate a new pattern according to thecurrent value. Lastly, a set of optimal cutting patterns is selected to form the cutting scheme. Thealgorithm was compared with the famous T-shape algorithm using some benchmark problem tests.The results show that the algorithm can save more sheets than the T-shape one, and the calculationtime is reasonable in practical application.
作者 曾兆敏 王继红 管卫利 Zeng Zhaomin;Wang Jihong;Guan Weili(Sichuan Institute of Information Technology, Guangyuan Sichuan 628017, China;School of Electrical Engineering, Zhengzhou University of Science&Technology, Zhengzhou Henan 450064, China;Information Engineering College, Nanning University, Nanning Guangxi 530200, China)
出处 《图学学报》 CSCD 北大核心 2016年第4期471-475,共5页 Journal of Graphics
基金 四川省教育厅科研项目(GZY15C45) 广西科学研究与技术开发计划项目(12118017-10A)
关键词 二维切割 矩形件下料 背包算法 线性规划算法 two-dimensional cutting rectangle cutting stock knapsack algorithm linear programming algorithm
  • 相关文献

参考文献12

  • 1Wascher G, Hauβner H, Schumann H. An improvedtypology of cutting and packing problems [J]. EuropeanJournal of Operational Research, 2007, 183(3): 1109-1130.
  • 2邓应波,祝胜兰,饶运清.一种针对绝缘纸板排样的混合算法[J].机械设计与制造,2013(3):23-25. 被引量:12
  • 3Andrade R, Birgin E G, Morabito R. Two-stagetwo-dimensional guillotine cutting stock problems withusable leftover [J]. International Transactions inOperational Research, 2016, 23(1/2): 121-145.
  • 4Hifi M, Negre S, Ouafi R, et al. A parallel algorithm forconstrained two-staged two-dimensional cuttingproblems [J]. Computers & Industrial Engineering, 2012,62(1): 177-189.
  • 5Cui Y D, Huang B X. Heuristic for constrained T-shapecutting patterns of rectangular pieces [J]. Computers &Operations Research, 2012, 39(12): 3031-3039.
  • 6Cui Y D. Heuristic for two-dimensional homogeneoustwo-segment cutting patterns [J]. EngineeringOptimization, 2013, 45(1): 89-105.
  • 7Cui Y D. A new dynamic programming procedure forthree-staged cutting patterns [J]. Journal of GlobalOptimization, 2013, 55(2): 349-357.
  • 8潘卫平,陈秋莲,崔耀东,陈怡丹.基于匀质条带的矩形件最优三块布局算法[J].图学学报,2015,36(1):7-11. 被引量:27
  • 9陈学松,曹炬,方仍存.遗传模拟退火算法在矩形优化排样系统中的应用[J].锻压技术,2004,29(1):27-29. 被引量:17
  • 10崔耀东.生成矩形毛坯最优T形排样方式的递归算法[J].计算机辅助设计与图形学学报,2006,18(1):125-127. 被引量:22

二级参考文献32

共引文献62

同被引文献46

引证文献9

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部