期刊文献+

带有关节权重的DTW动作识别算法研究 被引量:5

Research on DTW Action Recognition Algorithm with Joint Weighting
下载PDF
导出
摘要 大多数动作仅包含部分关节的运动,现有方法未对运动剧烈的关节与几乎不参与运动的关节进行区分,一定程度上降低了动作识别精度。针对这个问题,提出一种自适应关节权重计算方法。结合动态时间规整(DTW)方法,利用获得的关节权重进行动作识别。首先对分类动作序列进行分段,每段动作序列中运动较剧烈的关节选择分配更高权重,其余关节平均分配权重;然后提取特征向量,计算两段动作序列的DTW距离;最后采用K近邻方法进行动作识别。实验结果表明,该算法的总体分类识别准确率较高,且对于较相似的动作也能获得较好的识别结果。 Human motions always contain only motions of some body parts, but much of the existingmethods on action recognition don’t take the motion intensity of each joint into account, which lowerthe accuracy of action recognition in some extent. To solve this problem, an adaptive joint weightingscheme is proposed to calculate the weight of each joint and combined the weights with dynamic timewarping (DTW) to recognize actions. Firstly, the action sequence was segmented into severalsegments and some most violent joints in each segment are assigned higher weight while theremaining joints are evenly weighted. Then feature vectors of two action sequences were extracted andthe distance between two action sequences were calculated by DTW. Finally the action recognition wasachieved by K-nearest neighbor method. The experiments showed that the overall classificationaccuracy of the proposed method is higher, and the result is also good for some similar actions.
作者 汪成峰 陈洪 张瑞萱 朱德海 王庆 梅树立 Wang Chengfeng;Chen Hong;Zhang Ruixuan;Zhu Dehai;Wang Qing;Mei Shuli(College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China;Beijing Jiu Yi Tong Xing Technology Co., Ltd, Beijing 100083, China)
出处 《图学学报》 CSCD 北大核心 2016年第4期537-544,共8页 Journal of Graphics
基金 国家科技支撑计划项目(2013BAH48F02)
关键词 动作识别 人体运动分析 动态时间规整 关节权重 姿态特征 action recognition human motion analysis dynamic time warping joint weight pose feature
  • 相关文献

参考文献18

  • 1Galna B, Barry G, Jackson D, et al. Accuracy of theMicrosoft Kinect sensor for measuring movement inpeople with Parkinson’s disease [J]. Gait & Posture,2014, 39(4): 1062-1068.
  • 2王向东,张静文,毋立芳,徐文泉.一种运动轨迹引导下的举重视频关键姿态提取方法[J].图学学报,2014,35(2):256-261. 被引量:4
  • 3Zhang Z Y. Microsoft Kinect sensor and its effect [J].IEEE MultiMedia, 2012, 19(2): 4-10.
  • 4Wang C Y, Wang Y Z, Yuille A L. An approach topose-based action recognition [C].CVPR 2013: 26thProceedings of the IEEE Conference on ComputerVision and Pattern Recognition. New York: IEEE Press,2013: 915-922.
  • 5张丹,陈兴文,赵姝颖,李纪伟,白钰.基于Kinect骨骼预定义的体态识别算法[J].计算机应用,2014,34(12):3441-3445. 被引量:4
  • 6李学相,安学庆.基于三维图像动作识别算法研究[J].计算机仿真,2013,30(9):374-377. 被引量:2
  • 7朱国刚,曹林.基于Kinect传感器骨骼信息的人体动作识别[J].计算机仿真,2014,31(12):329-333. 被引量:25
  • 8Seidenari L, Varano V, Berretti S, et al. Recognizing actionsfrom depth cameras as weakly aligned multi-partbag-of-poses [C].Computer Vision and Pattern RecognitionWorkshops (CVPRW), IEEE Conference on. New York:IEEE Press, 2013: 479-485.
  • 9Beaudoin P, Coros S, van de Panne M, et al.Motion-motif graphs [C].ACM Siggraph/EurographicsSymposium on Computer Animation (2008). New York:ACM Press, 2008: 117-126.
  • 10Müller M, Baak A, Seidel H P. Efficient and robustannotation of motion capture data [C].ACM Siggraph/Eurographics Symposium on Computer Animation(2009). New York: ACM Press, 2009: 17-26.

二级参考文献69

  • 1柴秀娟,山世光,卿来云,陈熙霖,高文.基于3D人脸重建的光照、姿态不变人脸识别[J].软件学报,2006,17(3):525-534. 被引量:54
  • 2Bruderlin A,Williams L.Motion signal processing[A].In:Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,Los Angeles,California,1996.97~115
  • 3Witkin Andrew,Popovic Zoran.Motion warping[A].In:Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,Los Angeles,California,1995.105~108
  • 4Lee J H,Shin S Y.A hierarchical approach to interactive motion editing for human-like figures[A].In:Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,Los Angeles,California,1999.39~48
  • 5Witkin A,Kass M.Spacetime constraints[J].Computer Graphics,1988,22(4):159~168
  • 6Gleicher M.Motion editing with spacetime constraints[A].In:Proceedings of Symposium on Interactive 3D Graphics,Providence,Rhode Island,1997.139~148
  • 7Gleicher M.Retargeting motion to new characters[A]..In:Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,Orlando,Florida,1998.33~42
  • 8Rose C,Guenter B,Bodenheimer B,et al.Efficient generation of motion transition using spacetime constraints[A].In:Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,New Orleans,Louisiana,1996.147~154
  • 9deMenthon D,Kobla V,Doermann David.Video summarization by curve simplification[A].In:Proceedings of ACM Multimedia'98,Bristol,UK,1998.211~218
  • 10Zhao Li,Qi Wei,Li Stan Z,et al.Key-frame extraction and shot retrieval using nearest feature line(NFL)[A].In:Proceedings of the 2000 ACM workshops on Multimedia,Los Angeles,California,2000.217~220

共引文献76

同被引文献45

引证文献5

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部