期刊文献+

用于DR图像缺陷检测的改进的LBP算法 被引量:3

Improved LBP used for detection of defects of DR images
下载PDF
导出
摘要 针对传统LBP(Local Binary Pattern)算法在DR图像缺陷检测中对噪声异常敏感而导致的缺陷识别率低的问题,在已有的韦伯LBP算法(Weber Local Binary Pattern,WLBP)的基础上,提出改进的WALBP(Weber Adapted Local Binary Patterns)算法。WALBP算法保留了WLBP算法最后生成二维直方图的特点,对其所用的LBP算子和Lo G(Laplacian of Gaussian)方法进行了改进。WALBP算法更加有效地描述了DR图像的纹理特征,同时有效解决了WLBP算子在进行缺陷检测时直方图维数较多及分类能力不强的问题。通过对多幅铸件DR图像进行实验分析,结果表明,相对于已有的WLBP算法和传统的LBP算法,WALBP算法在缺陷检测上具有更高的识别率,在缺陷识别技术中具有很高的应用价值。 For traditional LBP(Local Binary Pattern)algorithm is sensitive to noise and lead to the lower recognition ratein DR image defect detection, an improved WALBP(Weber Adapted Local Binary Patterns)algorithm is proposed on thebasis of the existing of Weber LBP(WLBP)algorithm. WALBP algorithm retains the characteristics which form thetwo-dimensional histogram, the LBP operator and LoG(Laplacian of Gaussian)method that used are improved. WALBPalgorithm is more effective to describe the DR image texture feature, and effectively solves the WLBP(Weber Local BinaryPattern)operator in defect detection histogram more dimension classification and capability is not strong. Through analyzingcasting DR image experiments, the results show that compared with the existing WLBP algorithm and the traditional LBPalgorithm, WALBP algorithm has higher recognition rate on defect detection, in the defect recognition technology has ahigh application value.
作者 赵亚丁 沈宽 ZHAO Yading;SHEN Kuan(College of Mathematics & Statistics, Chongqing University, Chongqing 401331, China;Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education,Chongqing University, Chongqing 400030, China)
出处 《计算机工程与应用》 CSCD 北大核心 2016年第19期179-183,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.61271313) 国家重大科学仪器设备开发专项(No.2013YQ030629)
关键词 LBP算法 铸件 噪声 鲁棒性 韦伯LBP算法(WLBP) WALBP算法 缺陷检测 Local Binary Pattern(LBP) casting noise robustness Weber LBP(WLBP) Weber Adapted Local Binary Patterns(WALBP) defect detection
  • 相关文献

参考文献11

  • 1Ren J,Jiang X,Yuan J.Noise resist ant local binary patternwith an embedded error-correction mechanism[J].IEEE Trans on Image Process,2013,22(10):4049-4060.
  • 2Fathi A,Naghsh-Nilchi A R.Noise tolerant local binarypattern operator for efficient texture analysis[J].PatternRecognition Letters,2012,33(9):1093-1100.
  • 3Zhao G丆Pietikainen M.Dynamic texture recognition usingvolume local binary patterns[C].Proc of Workshop onDynamical Vision乮WDV 2005/2006乯丆2007丆4358丗165-177.
  • 4Liu F,Tang Z,Tang J.WLBP:Weber local binary patternfor local image description[J].Neurocomputing,2013,120:325-335.
  • 5Ojala T,Pietikainen M,Harwood D.A comparative studyof texture measures with classification based on featuredistributions[J].Pattern Recognition,1996,29(1):51-59.
  • 6Ojala T,Pietikainen M.Multiresolution grayscale and rotationinvariant texture classification with Local binarypattern[J].IEEE Trans on PAMI,2002,24(7):971-987.
  • 7Chen Jie,Shan Shiguang,He Chu,et al,WLD:A robustlocal image descriptor[J].IEEE Trans on Pattern AnalMach Intel,2010,32(9):1705-1720.
  • 8Jiao Jichen,Zhao Baojun.A new feature descriptor andselection method to space image registration[C].Proceedingsof International Conference on IASP,2010:314-317.
  • 9Bruni V,Vitulano D.A generalized model for scratchdetection[J].IEEE Trans on Image Process,2004,13(1):44-50.
  • 10Phiasai T,Kumhom P,Chamnongthai K.A digital imagewatermarking technique using prediction method andWeber ratio[C].Proceedings of International Symposiumon Communications and Information Technologies,2004.

同被引文献31

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部