摘要
针对铁水硅含量无法直接在线检测的问题,本文提出了一种基于优化极限学习机(ELM)的高炉铁水硅含量预报方法.该方法利用复合差分进化算法(CoDE)的快速定位全局最优解的能力来优化极限学习机的输入权值和隐层节点阈值,在此基础上建立了基于复合差分进化算法优化极限学习机(CoDE-ELM)的高炉铁水硅含量预报模型.以某钢铁厂2650 m^3的高炉为例,利用实际采集数据进行模型检验,结果表明,当绝对误差小于0.1时,铁水硅含量的预报命中率为89%,均方根误差为0.047,实际目标值序列与预报值序列的相关系数为0.851.所建模型的预报结果优于支持向量机(SVM)、前馈神经网络(BP-NN)、极限学习机以及差分优化极限学习机(DE-ELM),对高炉炉温的实际调控具有较好的指导意义.
Considering the silicon content of the hot metal cannot be directly detected online, a prediction method for silicon content in hot metal based on the optimized extreme learning machine (ELM) is proposed. The weights of inputs and thresholds of hidden nodes in the extreme learning machine are optimized by a composite differential evolution algorithm (CoDE) because of its ability of quickly locating the global optimum solution. With the optimized results, a prediction method based on the composite differential evolution extreme learning machine (CoDE–ELM) is established.The proposed method is verified by using the actual data on a 2650 m3 blast furnace of a steel plant. The verification results show that when the relative prediction error is confined to 0.1, the hit rate is 89%, the root mean square error of prediction is 0.047, and the correlation coefficient of the sequence of the actual target value and the predicted target value is 0.851. Through experiments, it can be seen that the prediction results of the established model are much better than that of the support vector machine (SVM), feedforward neural network, extreme learning machine (ELM) and differential evolution optimized extreme learning machine (DE–ELM). Moreover, the model provides important guiding significance to the temperature control of the blast furnace.
作者
蒋朝辉
尹菊萍
桂卫华
阳春华
JIANG Zhao-hui;YIN Ju-ping;GUI Wei-hua;YANG Chun-hua(School of Information Science and Engineering, Central South University, Changsha Hunan 410083, China)
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2016年第8期1089-1095,共7页
Control Theory & Applications
基金
国家自然科学基金重大项目(61290325)
国家自然科学基金创新研究群体科学基金项目(61321003)资助~~
关键词
铁水硅含量
预报模型
复合差分
极限学习机
silicon content in hot metal
prediction model
composite differential
extreme learning machine