期刊文献+

基于复合差分进化算法与极限学习机的高炉铁水硅含量预报 被引量:17

Prediction for blast furnace silicon content in hot metal based on composite differential evolution algorithm and extreme learning machine
下载PDF
导出
摘要 针对铁水硅含量无法直接在线检测的问题,本文提出了一种基于优化极限学习机(ELM)的高炉铁水硅含量预报方法.该方法利用复合差分进化算法(CoDE)的快速定位全局最优解的能力来优化极限学习机的输入权值和隐层节点阈值,在此基础上建立了基于复合差分进化算法优化极限学习机(CoDE-ELM)的高炉铁水硅含量预报模型.以某钢铁厂2650 m^3的高炉为例,利用实际采集数据进行模型检验,结果表明,当绝对误差小于0.1时,铁水硅含量的预报命中率为89%,均方根误差为0.047,实际目标值序列与预报值序列的相关系数为0.851.所建模型的预报结果优于支持向量机(SVM)、前馈神经网络(BP-NN)、极限学习机以及差分优化极限学习机(DE-ELM),对高炉炉温的实际调控具有较好的指导意义. Considering the silicon content of the hot metal cannot be directly detected online, a prediction method for silicon content in hot metal based on the optimized extreme learning machine (ELM) is proposed. The weights of inputs and thresholds of hidden nodes in the extreme learning machine are optimized by a composite differential evolution algorithm (CoDE) because of its ability of quickly locating the global optimum solution. With the optimized results, a prediction method based on the composite differential evolution extreme learning machine (CoDE–ELM) is established.The proposed method is verified by using the actual data on a 2650 m3 blast furnace of a steel plant. The verification results show that when the relative prediction error is confined to 0.1, the hit rate is 89%, the root mean square error of prediction is 0.047, and the correlation coefficient of the sequence of the actual target value and the predicted target value is 0.851. Through experiments, it can be seen that the prediction results of the established model are much better than that of the support vector machine (SVM), feedforward neural network, extreme learning machine (ELM) and differential evolution optimized extreme learning machine (DE–ELM). Moreover, the model provides important guiding significance to the temperature control of the blast furnace.
作者 蒋朝辉 尹菊萍 桂卫华 阳春华 JIANG Zhao-hui;YIN Ju-ping;GUI Wei-hua;YANG Chun-hua(School of Information Science and Engineering, Central South University, Changsha Hunan 410083, China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2016年第8期1089-1095,共7页 Control Theory & Applications
基金 国家自然科学基金重大项目(61290325) 国家自然科学基金创新研究群体科学基金项目(61321003)资助~~
关键词 铁水硅含量 预报模型 复合差分 极限学习机 silicon content in hot metal prediction model composite differential extreme learning machine
  • 相关文献

参考文献3

二级参考文献24

  • 1刘学艺,刘祥官,王文慧.贝叶斯网络在高炉铁水硅含量预测中的应用[J].钢铁,2005,40(3):17-20. 被引量:34
  • 2费春国,韩正之.一种改进的混沌优化算法[J].控制理论与应用,2006,23(3):471-474. 被引量:16
  • 3刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:291
  • 4VAPNIK V. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995.
  • 5VAPNIK V. An overview of statistical learning theory[J]. IEEE Transaction on Neural Networks, 1999, 10(5): 988 - 999.
  • 6MUSICANT D R, FEINBERG A. Active set support vector regression[J]. IEEE Transaction on Neural Networks, 2004, 15(2): 268 - 275.
  • 7SHEVADE S K, KEERTHI S S, BHATFACHARYYA C. Improvements to SMO algorithm for regression[J]. IEEE Transaction on Neural Networks, 2000, 11(5): 1188 - 1183.
  • 8VAN GESTEL, SUYKENS T, J A K, et al. Financial time series prediction using least squares support vector machines within the evidence framework[J]. IEEE Transaction on Neural Networks, 2001, 12(4): 809 - 821.
  • 9SCHOLKOPF B, SMOLA A J, WILIMSON R, et al. New support vector algorithms[J]. Neural Computation, 2000, 12(5): 1207 - 1245.
  • 10KENNEDY J, EBERHART R C. Particle swarm optimization proc[C] IIIEEE International Conference on Neural Networks. Piscataway: IEEE, 1995: 1942- 1948.

共引文献37

同被引文献195

引证文献17

二级引证文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部