期刊文献+

一种自适应加权HOG特征的人脸识别算法 被引量:15

Face recognition based on adaptively weighted HOG
下载PDF
导出
摘要 为了提高人脸识别在复杂条件下的识别率,提出一种基于自适应加权梯度方向直方图特征(AW-HOG)的人脸识别方法。该方法首先将人脸图像分成均匀子块,并利用HOG描述算子提取分块人脸特征,根据各分块对识别的贡献率自适应地计算各分块的权重,然后融合权重系数以及各分块的HOG特征,形成AW-HOG特征并采用主成分分析(PCA)算法进行降维,最后利用支持向量机(SVM)进行分类识别。在Yale B以及AR标准人脸库上的实验结果表明,提出的人脸识别方法在识别率上优于传统算法且对光照具有较强的鲁棒性。 This paper proposes a novel approach for face recognition based on Adaptively Weighted Histograms of OrientedGradients(AW-HOG)to solve the issues of low face recognition rate in complex environments.Firstly,AW-HOG featureis available by fusing the weighting map and the traditional HOG feature of the sub-images divided from the originalwhole face images.And the weighting map is adaptively computed on account of the contribution of each sub-image.After that,the dimensions of AW-HOG features are reduced by Principal Component Analysis(PCA)and the final classificationfeatures are generated.Finally,Support Vector Machine(SVM)is utilized in face classification and recognitionusing the final features.Experimental results based on Yale B and AR standard face databases demonstrate that theproposed approach not only obviously enhances face recognition rate in complex environments but also has certain robustnessto the influence of light and expression.
作者 胡丽乔 仇润鹤 HU Liqiao;QIU Runhe(College of Information Sciences and Technology, Donghua University, Shanghai 201620, China;Engineering Research Center of Digitized Textile & Fashion Technology, Donghua University, Shanghai 201620, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第3期164-168,共5页 Computer Engineering and Applications
基金 上海市教委科研创新重点项目(No.12ZZ059)
关键词 人脸识别 梯度方向直方图 主成分分析 自适应加权 支持向量机 face recognition Histograms of Oriented Gradients(HOG) Principal Component Analysis(PCA) adaptively weighted Support Vector Machine(SVM)
  • 相关文献

参考文献6

二级参考文献42

  • 1Dalai N, Triggs B. Histograms of oriented gradients for human detection [C] //Proceedings ofConference Computer Vision and Pattern Recognition. Los Alamitos: IEEE Compute Society Press, 2005, 1:886-893.
  • 2Deniz O, Bueno G, Salito J, et al. Face recognition using histograms of oriented gradients [J]. Pattern Recognition Letters, 2011, 32(12): 1598-1603.
  • 3Yang P, Shan S G, Gao W, et al. Face recognition using Aria-Boosted Gabor features [C] //Proceedings of the 6th 1EEE International Conference on Automatic Face and Gesture Recognition. Los Alamitosl IEEE Computer Society Press, 2004:356-361.
  • 4Zhang W C, Shan S G, Gao W, et al. Local Gabor binary pattern histogram sequence ( LGBPHS ) : a novel non-statistical model for face representation and recognition [C] //Proceedings of the 10th IEEE International Conference on Computer Vision. Los Alamitos: IEEE Computer Society Press, 2005:786-791.
  • 5Tan X Y, Triggs B. Fusing Gabor and LBP feature sets for kernel based face recognition [C] //Proceedings of the 3rd International Conference on Analysis and Modeling of Faces and Gestures. Heidelberg: Springer, 2007:235-249.
  • 6Oiala T, Pietikainen M, Harwood D. A comparative study of texture measures with classification based on feature distributions [J]. Pattern Recognition, 1996, 29(1) : 51-59.
  • 7Ahonen T, Hadid A, Pietikainen M. Face description with local binary patterns: application to face recognition [M]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(12): 2037-2041.
  • 8Lowe D G. Distinctive image features from scale invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 9Bicego M, Lagorio A, Grosso E, et al. On the use of sift features for face authentication [C]/Proceedings of Conference on Computer Vision and Pattern Recognition Workshop. Los Alamitos: IEEE Computer Society Press, 2006 : 35.
  • 10Albiol A, Monzo D, Martin A, et al. Face recognition using ttOG-EBGM [J]. Pattern Recognition Letters, 2008, 29 (10): 1537-1543.

共引文献122

同被引文献128

引证文献15

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部