期刊文献+

基于Cat混沌与高斯变异的改进灰狼优化算法 被引量:36

Improved grey wolf optimization algorithm based on chaotic Cat mapping and Gaussian mutation
下载PDF
导出
摘要 针对基本灰狼优化算法在求解复杂问题时同样存在依赖初始种群、过早收敛、易陷入局部最优等缺点,提出一种改进的灰狼优化算法应用于求解函数优化问题中。该算法首先利用混沌Cat映射产生灰狼种群的初始位置,为算法全局搜索过程的种群多样性奠定基础;同时引入粒子群算法中的个体记忆功能以便增强算法的局部搜索能力和加快其收敛速度;最后采用高斯变异扰动和优胜劣汰选择规则对当前最优解进行变异操作以避免算法陷入局部最优。对13个基准测试函数进行仿真实验,结果表明,与基本GWO算法、PSO算法、GA算法以及ACO算法相比,该算法具有更好的求解精度和更快的收敛速度。 In order to overcome the defects of basic grey wolf optimization algorithm about the dependence on the initial population, the presence of premature convergence, and easily getting into local minima, this paper proposes an improved grey wolf optimization algorithm applied to solve the function optimization problem. In the proposed algorithm, firstly,chaotic Cat sequence is used to initiate individual position, which can strengthen the diversity of global searching. Secondly,the individual memory from PSO are applied to enhance the local search ability and convergence speed. Thirdly, a Gaussian disturbance based the rules of survival of the fittest will be given on the global optimum of each generation, thus the algorithm can effectively jump out of local minima. Experimental results based on the thirteen benchmark functions show that the proposed improved GWO algorithm is superior to the basic GWO, PSO, GA and ACO algorithm in both computational accuracy and convergence rate.
作者 徐辰华 李成县 喻昕 黄清宝 XU Chenhua;LI Chengxian;YU Xin;HUANG Qingbao(School of Electrical Engineering, Guangxi University, Nanning 530004, China;School of Computer & Electronics and Information, Guangxi University, Nanning 530004, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第4期1-9,50,共10页 Computer Engineering and Applications
基金 国家自然科学基金(No.61364007 No.61462006) 广西自然科学基金(No.2014GXNSFAA118391)
关键词 混沌cat映射 灰狼优化算法 函数优化 高斯变异 优胜劣汰选择 chaotic Cat map grey wolf optimization algorithm function optimization Gaussian mutation the rules of survival of the fittest
  • 相关文献

参考文献6

二级参考文献58

  • 1吴亮红,王耀南,周少武,袁小芳.采用非固定多段映射罚函数的非线性约束优化差分进化算法[J].系统工程理论与实践,2007,27(3):128-133. 被引量:27
  • 2S. Mirjalili, S. M. Mirjalili, A. Lewis. Grey wolf optimizer. Advances in Engineering Software, 2014, 69(3): 46- 61.
  • 3E. Bonabeau, M. Dorigo, G. Theraulaz. Swarm intelligence: from natural to artificial systems. New York: Oxford Univer- sity Press, 1999.
  • 4J. Kennedy, R. Eberhart. Particle swarm optimization. Proc. of the lEEE hternational Conference on Neural Networks, 1995: 1942- 1948.
  • 5R. Storn, K. Price. Differential evolution-a simple and effi- cient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11 (4): 341 - 359.
  • 6M. Dorigo, M. Birattari, T. Stutzle. Ant colony optimization. IEEE Computational lnteUigence Magazine, 2006, 1(4): 28- 39.
  • 7B. M. Vonholdt, D. R. Stahler, E. E. Bangs. A novel assess- ment of population structure and gene flow in grey wolf popu- lations of the Northern Rocky Mountains of the United States. Molecular Ecology, 2010, 19(20): 4412 - 4427.
  • 8C. M. Matthew, J. A. Vucetich. Effect of sociality and season on gray wolf tbraging behavior. Plos One, 2011, 6(3): 1 - 10.
  • 9J. A. Vucetich, R. O. Peterson, T. A. Waite. Raven scaveng- ing favours group foraging in wolves. Animal Behavior, 2004, 67(6): 1117-1126.
  • 10C. Muro, R. Escobedo, L. Spector, et al. Wolf-pack (Canis lu- pus) hunting strategies emerge from simple rules in computa- tional simulations. Behavioral Processes, 2011, 88(3): 192- 197.

共引文献282

同被引文献305

引证文献36

二级引证文献244

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部