期刊文献+

产品表面缺陷检测的变步长采样机制研究 被引量:1

Research on Variable-Step Mechanism Used in Defect Detection of Products Surface
下载PDF
导出
摘要 为了实现对产品表面缺陷的快速自动识别,提出在先验已知各目标区域的最小待识别结构尺寸及空间畸变的条件下,采用最小二乘法拟合得出采样步长变化的函数关系曲面及其曲面对应的公式表达。将各待检区域的因变量带入公式计算可得到采样步长,在满足采样定理的前提下,基于变步长采样机制获取标准图像序列库;其次,通过LTP算法寻找被检产品的图像在标准库中的最优位置;最后,通过相关度判别各区域有无缺陷。实验表明在实际工业检测应用中,工程技术人员可以利用采样步长与最小待识别结构尺寸及空间畸变的函数关系确定采样步长,建立变步长采样机制。 In order to realize the rapid automatic identification of product surface defects, under the condition of known the minimum resolution and spatial distortion of target regions, using the least squares fitting concluded that the function relation surface of sampling step change and its corresponding formula. The dependent variable of each quarantine regions into the formula to calculate that sampling step can be obtained, when meet sampling theorem based on variable step sampling mechanism will get standard library image sequences. Secondly, by the LTP algorithm to find that tested product images in the optimal location of the standard library. Finally, through the correlation to determine whether defect regions. Experiments show that in actual industrial detection applications,engineering and technical personnel can establish variable-step mechanism according to the function relation of sampling step and minimum resolution and space distortion.
作者 郭静 韩跃平 李会鸽 Guo Jing;Han Yueping;Li Huige(School of Information and Communication Engineering,North University of China,Taiyuan 030051,China)
出处 《科技通报》 北大核心 2017年第2期129-132,200,共5页 Bulletin of Science and Technology
基金 国家自然科学基金(61171178) 山西省自然科学基金(2012011010-3) 2012年山西省高等学校优秀学术带头人支持计划
关键词 变步长采样机制 序列图像 缺陷检测 拟合 variable-step mechanism image sequences defect detection fitting
  • 相关文献

参考文献6

二级参考文献69

  • 1孙宁,冀贞海,邹采荣,赵力.基于局部二元模式算子的人脸性别分类方法[J].华中科技大学学报(自然科学版),2007,35(S1):177-181. 被引量:20
  • 2魏木生,陈果良.加权总体最小二乘问题的解集和性质[J].高校应用数学学报(A辑),1994,9(3):304-311. 被引量:4
  • 3张洪钺,黄劲东,范文雷.全最小二乘法及其在参数估计中的应用[J].自动化学报,1995,21(1):40-47. 被引量:20
  • 4罗三定,陈海波.基于区域增长的自适应窗口立体匹配算法[J].中南大学学报(自然科学版),2005,36(6):1042-1047. 被引量:10
  • 5Li J, Allinson N M. A comprehensive review of current local features for computer vision [J]. Neurocomputing, 2008, 71 (10/12) : 1771-1787.
  • 6Mikolajczyk K, Tuytelaars T, Schmid C, etal. A comparison of affine region detectors [J]. International Journal of Computer Vision, 2005, 65(1/2): 43-72.
  • 7Mikolajczyk K, Sehmid C. A performance evaluation of local descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.
  • 8Lowe D G. Distinctive image features from seale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 9Ke Y, Sukthankar representation for local R. PCA-SIFT: a more distinctive image descriptors [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Washington D C, 2004, 2:506-513.
  • 10Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.

共引文献163

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部