期刊文献+

Recovery prediction of copper oxide ore column leaching by hybrid neural genetic algorithm 被引量:2

采用人工神经网络基因复合算法预测氧化铜矿柱浸工艺铜浸出率(英文)
下载PDF
导出
摘要 The artificial neural network(ANN)and hybrid of artificial neural network and genetic algorithm(GANN)were appliedto predict the optimized conditions of column leaching of copper oxide ore with relations of input and output data.The leachingexperiments were performed in three columns with the heights of2,4and6m and in particle size of<25.4and<50.8mm.Theeffects of different operating parameters such as column height,particle size,acid flow rate and leaching time were studied tooptimize the conditions to achieve the maximum recovery of copper using column leaching in pilot scale.It was found that therecovery increased with increasing the acid flow rate and leaching time and decreasing particle size and column height.Theefficiency of GANN and ANN algorithms was compared with each other.The results showed that GANN is more efficient than ANNin predicting copper recovery.The proposed model can be used to predict the Cu recovery with a reasonable error. 采用人工神经网络(ANN)以及人工神经网络和基因复合(GANN)算法来优化氧化铜矿柱浸工艺参数。采用三种高度的浸矿柱(2,4,6 m)和尺寸为<25.4 mm和<50.8 mm的两种矿物来进行浸出实验。在台架实验规模下,对浸矿柱高度、矿粒尺寸、硫酸流速、浸出时间等工艺参数对铜浸出率的影响进行研究,对浸出条件进行优化以得到最大的浸出率。研究结果表明,铜的浸出率随硫酸流速和浸出时间的增加而增加,随矿粒尺寸和浸矿柱高度的减小而增加。对人工神经网络(ANN)、人工神经网络和基因复合(GANN)算法的效率进行了比较,结果表明,人工神经网络和基因复合(GANN)算法比人工神经网络(ANN)算法更有效。采用新提出的算法模型来预测铜的浸出率误差更低。
作者 Fatemeh Sadat HOSEINIAN Aliakbar ABDOLLAHZADE Saeed Soltani MOHAMADI Mohsen HASHEMZADEH Fatemeh Sadat HOSEINIAN;Aliakbar ABDOLLAHZADE;Saeed Soltani MOHAMADI;Mohsen HASHEMZADEH(Department of Mining & Metallurgical Engineering, Amirkabir University of Technology;Department of Mining Engineering, University of Kashan;Department of Chemical and Materials Engineering, University of Alberta Edmonton)
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第3期686-693,共8页 中国有色金属学报(英文版)
关键词 LEACHING copper oxide ore RECOVERY artificial neural network genetic algorithm 浸出 氧化铜矿 浸出率 人工神经网络 基因算法
  • 相关文献

同被引文献24

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部