期刊文献+

融合对立学习的混合灰狼优化算法 被引量:6

Hybrid Grey Wolf Optimization Algorithm with Opposition-Based Learning
下载PDF
导出
摘要 针对标准灰狼优化(grey wolf optimization,GWO)算法存在后期收敛速度慢,求解精度不高,易出现早熟收敛现象等问题,提出了一种基于对立学习策略和Rosenbrock局部搜索的混合灰狼优化(hybrid GWO,HGWO)算法。该算法首先采用对立学习策略取代随机初始化生成初始种群,以保证群体的多样性;然后对当前群体中最优个体进行Rosenbrock局部搜索,以增强局部搜索能力和加快收敛速度;最后为了避免算法出现早熟收敛现象,利用精英对立学习方法产生精英对立个体。对6个标准测试函数进行仿真实验,并与其他算法进行比较,结果表明,HGWO算法收敛速度快,求解精度高。 The standard grey wolf optimization(GWO)algorithm has a few disadvantages of slow convergence,low solving precision and high possibility of being trapped in local optimum.To overcome these disadvantages ofGWO algorithm,this paper proposes a hybrid GWO(HGWO)algorithm based on opposition-based learning strategyand Rosenbrock local search method.In the proposed hybrid algorithm,opposition-based learning strategy is introducedto generate initial population,which strengthens the diversity of population.Rosenbrock local search methodis applied to the current best individual,which improves the convergence speed and local search ability of GWOalgorithm.Elite opposition-based learning approach is used to avoid premature convergence of GWO algorithm.The experimental results of6well-known benchmark functions show that the proposed HGWO algorithm hasstrong convergence and high precision.
作者 王敏 唐明珠 WANG Min;TANG Mingzhu(Department of Information Engineering, Hunan Mechanical & Electrical Polytechnic, Changsha 410151, China;School of Computer and Communication, Hunan University, Changsha 410082, China;School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, China)
出处 《计算机科学与探索》 CSCD 北大核心 2017年第4期673-680,共8页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金No.61403046 湖南省科技计划项目No.2014FJ3051~~
关键词 灰狼优化算法 Rosenbrock搜索 对立学习 grey wolf optimization algorithm Rosenbrock search opposition-based learning
  • 相关文献

参考文献4

二级参考文献61

  • 1LU Hui-juan,ZHANG Huo-ming,MA Long-hua.A new optimization algorithm based on chaos[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2006,7(4):539-542. 被引量:19
  • 2吴亮红,王耀南,周少武,袁小芳.采用非固定多段映射罚函数的非线性约束优化差分进化算法[J].系统工程理论与实践,2007,27(3):128-133. 被引量:27
  • 3Rosenbrock H H. An automatic method for finding the greatest or least value of a function[J]. Computer J, 1960, 3(3): 175-184.
  • 4Bazaraa M S, Shetty C M. Nonlinear programming: Theory and algorithms[M1. New York: Wiley, 1979.
  • 5Kennedy J, Eberhart R C. Particle swarm optimization[C]. Proc of the IEEE Int Conf on Neural Networks. Piscataway, 1995: 1942-1948.
  • 6Kennedy J, Eberhart R C, Shi Y. Swarm intelligence[M]. San Francisco: Morgan Kaufman Publishers, 2001.
  • 7Eberhart R C, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization[C]. Proc 2000 Conf Evolutionary Computation. San Diego, 2000: 84-88.
  • 8Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58-73.
  • 9Carlisle A, Dozier G. An off-the-shelf PSO[C]. Proc of the Workshop on Particle Swarm Optimization. Indianapolis, 2001: 1-6.
  • 10Fan S K S, Zahara E. A hybrid simplex search and particle swarm optimization for unstrained optimization[J]. European J of Operational Research, 2007, 181(2): 527- 548.

共引文献158

同被引文献72

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部