期刊文献+

车牌识别中的图像分割技术研究 被引量:13

Research on Image Segmentation Technology for A License Plate Recognition
下载PDF
导出
摘要 针对当前车牌识别系统中图像分割方法应用单一,适用范围窄的问题,提出了综合应用多种图像分割方法的算法。车牌识别系统分为车牌图像预处理、车牌定位、字符分割、字符识别四个步骤。首先运用投影算法,把输入的原始车牌彩色图像转换成灰度图和二值图,并实现车牌位置的初步定位;其次运用OTSU算法,实现车牌的精确定位,并获取车牌的灰度图数据;然后运用动态自适应算法对车牌灰度图进行二值化;最后根据车牌的几何特征,对车牌字符进行分割及归一化处理。通过对4000张不同环境下车牌图片的测试,表明本处的算法可以成功的实现车牌定位及字符分割,具有较强的适应性,对后续的字符识别起到了重要作用。 In order to solve the problem of single image segmentation means in the system of license platerecognition,which is adapted poorly to license plate images with big dynamic range,the algorithm ofapplicating various image segmentation methods was put forward.The license plate recognition involvedfour components:the license plate image preprocessing,license plate location,character segmentation,and character recognition.At first,by use of the projection algorithm,the car license original color imageentered was converted to grayscale and binary map,candidate regions containing the license plateposition were got.Secondly,the OTSU algorithm was applied to get the precise position and gray data ofthe license plate.Then,dynamic adaptive algorithm was adopted for the binarization of the license plategray map.Finally,the characters were segmented and normalized by means of the geometric informationof the license plate area.The4000license plate images were tested,and the result shows that thearithmetic research is successful in the aspects of plate detection and character segmentation,which willplay an important role in the next character recognition.
作者 刘丽丽 Liu Lili(Department of Computer,Changzhi Institute,Changzhi Shanxi 046011,China)
出处 《科技通报》 北大核心 2017年第4期125-129,共5页 Bulletin of Science and Technology
关键词 投影 OTSU 动态自适应 车牌特征 车牌定位 字符分割 projection OTSU dynamic adaption license plate features license plate location license plate recognition
  • 相关文献

参考文献2

二级参考文献11

  • 1洪海涛,赵辉.图像技术用于零件尺寸测量的研究[J].仪器仪表学报,2001,22(z2):213-214. 被引量:27
  • 2王学林,周洪玉,许龙律.图像分析系统的阈值处理[J].电脑学习,1994(4):4-6. 被引量:3
  • 3Gisu Heo, Minwoo Kim, Insook Jung, Duk-Ryong Lee, JI-Seok Oh. Extraction of Car License Plate Regions Using Line Grouping and Edge Density Methods [C] // International Symposium on Information Technology Convergence, 37-42, November 2007.
  • 4Jing-Ming Guo and Yun-Fu Liu. License Plate Localization and Character Segmentation with Feedback Self-learning and Hybrid-binarization Techniques [J]. IEEE Transactions on Vehicular Technology, 2008, 57(3): 1417-1424.
  • 5TANG Shuang-tong and LI Wen-ju. Number and Letter Character Recognition of Vehicle License Plate based on Edge Hausdorff Distance [C] // Proceedings of the Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies, 2005: 850-852.
  • 6Khan, Nabeel Younus, Irnran, Ali Shariq and Ali. Naveed Distance and Color Invariant Automatic License Plate Recognition System [C] // International Conference on Emerging Technologies, 2007: 232-237.
  • 7Yungang Zhang and Changshui Zhang. A New Algorithm for Character Segmentation of License Plate [C] // Proceedings of IEEE Intelligent Vehicles Symposium, 2003: 106-109.
  • 8Shen-zheng Wang. A Saccade Framework for a Real-time Statistical Late Recognition System [J]. IEEE Transactions on Information Forensics and Security, 2007,2(2):267-282.
  • 9A. Kertesz, V. Kertesz, T. Muller. An On-line Image Processing System for Registration Number Identification [J]. IEEE International Conference on Neural Networks, 1994, 6: 4145-4148.
  • 10张少军,艾矫健,李忠富,李长江,李庆利.利用数字图像处理技术测量几何尺寸[J].北京科技大学学报,2002,24(3):284-287. 被引量:68

共引文献17

同被引文献69

引证文献13

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部