期刊文献+

气象要素空间插值方法优化研究 被引量:15

Optimized Study on Spatial Interpolation Methods for Meteorological Element
下载PDF
导出
摘要 运用反距离加权插值法(IDW)和梯度反距离加权插值法(GIDW)对全国183个气象站的2001年、2002年平均气温进行了内插,并在此基础上进行了幂指数优化和邻近点选择优化。交叉验证结果表明,对于IDW方法,幂指数为3、邻近点选择采用三角网法的插值结果最优;对于GIDW方法,幂指数为2、邻近点选择采用固定数目法的插值结果最优。在幂指数和邻近点选择优化的基础上,比较了IDW方法与GIDW方法的插值结果,考虑经纬度和海拔高程的GIDW方法明显优于IDW方法。在此基础上,提出了基于K-means聚类的空间插值优化方法,实践证明聚类后再插值比直接插值效果更佳,聚类为插值前的数据预处理提供了一种新的思路。 This paper used the inverse distance weighting(IDW) method and the gradient plus inverse distance weighting(GIDW) method to interpolate the yearly mean temperature data from 183 meteorological stations of China in 2001 and 2002. On the basis of this, the paper made the power exponent and the nearest points selecting optimization. Cross-validation tests showed that the power exponent being setting to 3 and using triangle net to select the nearest points reached the beast results for IDW, and the power exponent being setting to 2 and using fixed number points reached the beast results for GIDW. After the power exponent and the nearest points selecting optimizing, this paper compared the results of IDW and GIDW, which showed that the result of GIDW was obviously superior to the result of IDW. Finally, this paper put forward an optimization method for spatial interpolation based on K-means clustering. The experiment results show that interpolating after clustering is superior to directly interpolating, and clustering can provide a new thought for data pretreatment before interpolating.
作者 彭思岭
出处 《地理空间信息》 2017年第7期86-89,共4页 Geospatial Information
关键词 IDW GIDW 幂指数 聚类 IDW GIDW power exponent clustering
  • 相关文献

参考文献5

二级参考文献33

  • 1于贵瑞,何洪林,刘新安,牛栋.中国陆地生态信息空间化技术研究(Ⅰ)——气象/气候信息的空间化技术途径[J].自然资源学报,2004,19(4):537-544. 被引量:69
  • 2刘志红,Tim R.McVicar,LingTao Li,Tom G.Van Niel,杨勤科,李锐,穆兴民.基于5变量局部薄盘光滑样条函数的蒸发空间插值[J].中国水土保持科学,2006,4(6):23-30. 被引量:26
  • 3周允华 中国科学院北京农业生态系统试验站.中国地区光合有效辐射能量和光量子通量的时空分布.农田作物环境实验研究[M].北京:气象出版社,1990.15-39.
  • 4Yaron A Felus. New method for spatial statistics in geographic information system [D]. Columbus: The Ohio State University, 2001.
  • 5Lophaven S N, Nielson H B, Sondergaard J. DACE-A matlab kriging toolbox, Version2.0 [R]. Denmark :Technical University of Denmark, 2002.
  • 6侯景儒 尹镇南 李维明 等.实用地质统计学[M].北京:地质出版社,1998..
  • 7Price D T,McKenney D W,Nalder l A,et al. A comparison of two statistical methods for spatial interpolation of Canadian monthly mean climate data[J]. Agricultural and Forest Meteorology, 2000,101,81-94.
  • 8Houghton J T,Meira Filho L G,Callander B A. Climate change 1995:the science of climate change[M]. Cambridge: Cambridge University Press, 1996.
  • 9Hutchinson M F. Interpolation of rainfall data with thin plate smoothing splines - part I:Two dimensional smoothing of data with short range correlation [J]. Journal of Geographic Information and Decision Analysis, 1998,2 (2) : 139-151.
  • 10Peter M, Chris D. Mapping precipitation in Switzerland with ordinary and indicator Kriging [J]. Journal of Geographic In formation and Decision Analysis, 19 9 8,2 (2) : 6 5-7 6.

共引文献500

同被引文献222

引证文献15

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部