期刊文献+

基于混合maxout单元的卷积神经网络性能优化 被引量:6

Improving deep convolutional neural networks with mixed maxout units
下载PDF
导出
摘要 针对深度卷积神经网络中maxout单元非最大特征无法传递、特征图像子空间池化表达能力不足的局限性,提出混合maxout(mixout,mixed maxout)单元。首先,计算相同输入在不同卷积变换下所形成的特征图像子空间的指数概率分布;其次,根据概率分布计算特征图像子空间的期望;最后,利用伯努利分布对子空间的最大值与期望值加权,均衡单元模型。分别构建基于mixout单元的简单模型和网中网模型进行实验,结果表明mixout单元模型性能较好。 The maxout units have the problem of not delivering non-max features,resulting in the insufficient of pooling operation over a subspace that is composed of several linear feature mappings,when they are applied in deep convolutional neural networks.The mixed maxout(mixout)units were proposed to deal with this constrain.Firstly,the exponential probability of the feature mappings getting from different linear transformations was computed.Then,the averaging of a subspace of different feature mappings by the exponential probability was computed.Finally,the output was randomly sampled from the max feature and the mean value by the Bernoulli distribution,leading to the better utilizing of model averaging ability of dropout.The simple models and network in network models was built to evaluate the performance of mixout units.The results show that mixout units based models have better performance.
作者 赵慧珍 刘付显 李龙跃 罗畅 ZHAO Hui-zhen;LIU Fu-xian;LI Long-yue;LUO Chang(School of Air and Missile Defense, Air Force Engineering University, Xi’an 710051, China)
出处 《通信学报》 EI CSCD 北大核心 2017年第7期105-114,共10页 Journal on Communications
基金 国家自然科学基金资助项目(No.61601499)~~
关键词 深度学习 卷积神经网络 maxout单元 激活函数 deep learning convolutional neural network maxout units activation function
  • 相关文献

参考文献2

二级参考文献26

  • 1LIU C L,YIN F,WANG Q F,et al.ICDAR 2011Chinese handwriting recognition competition[A].Proceedings of IEEE International Conference on Document Analysis and Recognition[C].Beijing,China,2011.1464-1469.
  • 2LEUNG K C,LEUNG C H.Recognifon of handwritten Chinese characters by critical region analysis[J].Pattern Recognition,2010,43(3):949-961.
  • 3GAO T F,LIU C L.High accuracy handwritten Chinese character recognition using LDA-based compound distances[J].Pattern Recognition,2008,41(11):3442-3451.
  • 4TAO D P,LIANG L Y,JIN L W,et al.Similar handwritten Chinese character recognition by kernel discriminative locality alignment[J].Pattern Recognition Letters,2014,35(1):186-194.
  • 5BENGIO Y.Leamnig deep architectures for AI[J].Foundations and trends in Machine Learning,2009,2(1):1-127.
  • 6BENGIO Y,COURVILLE A.Deep Learning of Representations[M].Handbook on Neural Information Processing.Springer Berlin Heidelberg,2013.
  • 7DENG L,HINTON G,KINGSBURY B.New types of deep neural network learning for speech recognition and related applications:an overview[A].Proceedings of IEEE International Conference on Acoustics,Speech,and Signal Processing[C].Vancouver,Canada,2013.
  • 8HINTON G E,SALAKHUTDINOV R R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(5786):504-507.
  • 9LECUN Y,BOSERB,DENKER J S,et al.Handwritten digit recognition with a back-propagation network[A].Advances in neural information processing systems[C].Denver,United States,1990.396-404.
  • 10LECUN Y,KAVUKCUOGLU K,FARABET C.Convolutional networks and applications in vision[A].Proceedings of IEEE International Symposium onCircuits and Systems[C].Paris,France,2010.253-256.

共引文献36

同被引文献32

引证文献6

二级引证文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部