摘要
过渡金属氧化物(氢氧化物)由于其优良的电容特性而受到极大的关注,其中Co(OH)_2和Ni(OH)_2是研究的热点。采用电化学沉积法制备不同摩尔比的Co(OH)_2/Ni(OH)_2复合材料,利用XRD和SEM对沉积产物进行结构和形貌表征,同时采用循环伏安法、恒电流充放电以及电化学阻抗谱对电极材料进行电化学性能测试。结果表明,电化学沉积法可以制备出不同摩尔比的Co(OH)_2/Ni(OH)_2复合材料,电极材料为纳米花状结构,而这种结构大幅增加了活性材料的比表面积。随着沉积溶液中Co(NO_3)_2或Ni(NO_3)_2含量的增加,Co(OH)_2/Ni(OH)_2电极材料的放电时间与比电容值呈现先增大后减小的趋势。其中,当沉积溶液中Ni(NO_3)_2∶Co(NO_3)_2=1∶1时,所沉积的Co(OH)_2/Ni(OH)_2复合材料的放电时间最长、比电容值最大,可达到841.15 F/g。
Transition metal oxides(hydroxides)have great concern due to its excellent capacitance characteristics,in which Co(OH)2and Ni(OH)2research is a hot spot.Different molar ratios of Co(OH)2/Ni(OH)2composite materials are prepared by electrochemical deposition,characterization of the morphology and the structure of deposited product is carried out by means of XRD and SEM,electrochemical properties are performed by cyclic voltammetry,galvanostatic charge-discharge and electrochemical impedance spectroscopy.The results show that:different molar ratios of Co(OH)2/Ni(OH)2composite materials can be prepared by electrochemical deposition method,electrode materials possess nano-flower structure,this structure greatly increases the specific surface area of active materials.With increase of Co(NO3)2or Ni(NO3)2content in the electrolyte solution,Co(OH)2/Ni(OH)2electrode materials discharge time and specific capacitance value show a trend of first increase and then decrease.Among them,when Ni(NO3)2∶Co(NO3)2=1∶1,Co(OH)2/Ni(OH)2composite material deposited possesses the longest discharge time and the biggest specific capacitance,the specific capacitance value is as high as841.15F/g.
作者
钟艳
王升高
陈睿
刘星星
崔丽佳
王岩
ZHONG Yan;WANG Sheng-gao;CHEN Rui;LIU Xing-xing;CUI Li-jia;WANG Yan(Hubei Key Laboratory of Plasma Chemistry and Advanced Materials,Wuhan Institute of Technology,Wuhan 430074,China)
出处
《真空与低温》
2017年第4期235-240,共6页
Vacuum and Cryogenics
基金
国家自然科学基金(No.51272187
No.51442003)
湖北省自然科学基金(No.2013CFA012
No.2015CFB229)
湖北省科技厅(No.2015BAA093)
关键词
超级电容器
电沉积
氢氧化钴
氢氧化镍
复合材料
电化学性能
supercapacitor
electrodeposition
Co(OH)2
Ni(OH)2
composite material
electrochemical perforrmance