期刊文献+

一种改进的粒子群优化算法 被引量:5

An Improved Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 针对基本粒子群算法存在着收敛速度慢、效率低、易陷入局部最优等缺陷,为了更好地平衡全局和局部搜索能力,在粒子群算法中引入收缩因子,使算法中粒子不仅向种群最优的粒子进行学习,而且向种群中比自己优秀的所有粒子学习,增加了粒子的多样性。实验结果证明,与基本蚁群算法相比,改进的粒子群算法提高了收敛速度和效率,能一定程度地避免局部最优解的产生。 In view of the basic particle swarm optimization algorithm exits the slow speedconvergence,low efficiency,and is easy to fall into the local optimum.In order to better balance theglobal and local search capability,the shrinkage factor is introduced into the particle swarmoptimization algorithm.The particle of the population not only learn from the best particle,but alsolearn from all the particles in the algorithm,the diversity of particles is increased,The experimentalresults show that the improved particle swarm optimization algorithm can improve convergence speedand efficiency,and avoid the generation of local optimal solution comparing with the basic ant colonyalgorithm.
作者 任贺宇 郭磊 赵开新 REN He-yu;GUO Lei;ZHAO Kai-xin(Henan Communication Vocational Technology College,Zhengzhou 450000,China;Henan Provincial Civil Affairs School, Zhengzhou 450002,China;Henan Institute of Technology, Xinxiang 453002,China)
出处 《火力与指挥控制》 CSCD 北大核心 2017年第8期120-122,共3页 Fire Control & Command Control
基金 国家自然科学基金(61174085) 河南省高等学校重点科研基金资助项目(16A520084)
关键词 粒子群 全局最优 局部最优 学习规则 particle swarm global optimum local optimum learning rule
  • 相关文献

参考文献8

二级参考文献67

  • 1任子武,伞冶.自适应遗传算法的改进及在系统辨识中应用研究[J].系统仿真学报,2006,18(1):41-43. 被引量:169
  • 2纪震,廖惠连,吴青华.粒子群算法及应用[M].北京.科学出版社,2008:12-15.
  • 3Daniel N,Rich W,Chris G.The eucalyptus open source cloud computing system[J].9th IEEE/ACM International Symposium on Cluster Computing and the Grid,2009:124-131.
  • 4Pandey S,Wu L.A particle swarm optimization-based heuristic for scheduling workflow applications in cloud computing environments[C]//24th IEEE International Conference on Advanced Information Networking and Applications,2010:184-188.
  • 5Ochwerger B.The reservoir model and architecture for open federated cloud computing[J].IBM Journal of Research and Development,2009,53(4):1-17.
  • 6Sanjay Chaudhary.Adaptive distributed load balancing algorithm based on live migration of virtual machines in cloud[C]//Fifth International Joint Conference on INC,IMS and IDS,2011,6(5):33-46.
  • 7OCHWERGER B,BREITGAND D,LEVY E,et al.The reservoir model and architecture for open federated cloud computing[J].IBM Journal of Research and Development,2009,53(4):1-17.
  • 8LI J Y, Q1U Meikang,ZHONG Ming,et al. Online optimization for scheduling preemptable tasks on laaS cloud systems[J].Joumal of Parallel and Distributed Computing,2012,72(2):666-677.
  • 9] WANG S,DEY S.Rendering adaptation to address commtmication and computation constraints in cloud mobile gaming [C] 2010 IEEE Global Telecommtmications Conference (GLOBECOM 2010), IEEE,2010:1-6.
  • 10LIANG H,HUANG D,Cai L X,et al.Resource allocation for security services in mobile cloud computing[C].IEEE Conference on Computer Communications Workshop s,IEEE,2011,12:191 - 195.

共引文献137

同被引文献56

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部