摘要
An account of recent work on supported single‐atom catalyst design is given here for reactions as diverse as the low‐temperature water‐gas shift,methanol steam reforming,selective ethanol dehydrogenation,and selective hydrogenation of alkynes and dienes.It is of fundamental interest to investigate the intrinsic activity and selectivity of the active metal atom site and compare them to the properties of the corresponding metal nanoparticles and sub‐nm clusters.It is also important to understand what constitutes a stable active metal atom site in the various reaction environments,and maximize their loadings to allow us to design robust catalysts for industrial applications.Combined activity and stability studies,ideally following the evolution of the active site as a function of catalyst treatment in real time are recommended.Advanced characterization methods with atomic resolution will play a key role here and will be used to guide the design of new catalysts.
综述了负载型单原子催化剂设计的最新进展,以及负载型单原子催化剂在多种反应,如低温水汽变换、甲醇蒸汽重整、选择性乙醇脱氢、炔烃和二烯烃的选择性加氢等反应中的应用.研究活性金属原子位的固有活性和选择性,并与相应的金属纳米颗粒和次纳米簇的性质相比较是非常重要的.同时,理解在不同反应环境下稳定的活性金属原子位的组成,并最大化其负载量可使我们设计出适合工业应用的强健催化剂.在实际工作中,应将催化剂活性和稳定性研究相结合,尽可能遵循活性位随催化剂实时处理条件的变化规律.原子尺度的先进表征方法至关重要,可用于指导设计新催化剂.
基金
financial support of the work by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Awards Grant Number DE-FG02-05ER15730