期刊文献+

球面深度全景图表示下的三维形状识别 被引量:8

Deep Spherical Panoramic Representation for 3D Shape Recognition
下载PDF
导出
摘要 三维形状识别是近年来较为热门的研究方向,针对其中的三维模型形状的表达方法和识别问题,提出一种多分支卷积神经网络下的三维模型识别方法.该方法通过对三维模型进行球面深度投影得到球面全景图;为了提高识别精度,将每个模型的球面全景图从多个角度展开,创建多幅平面图像作为识别系统的输入;识别系统使用多分支的卷积神经网络,并将多幅全景图进行整合分析,最终得到一个三维模型的识别结果.对三维模型进行分类和检索的实验结果表明,文中方法的识别效果优于近年来的前沿方法,对三维模型进行检索的准确度甚至超过了多视图识别方法. 3D shape recognition is a hot topic in recent years.This paper proposed a3D model recognition method with multi-branch convolutional neural network(CNN)to address the problems of3D shape representation and recognition.The inputs of the proposed method are spherical panoramas by deep spherical projection of3D models;to improve recognition accuracy,the spherical panorama of the shape first unfolded on various orientations to produce multiple rectified images as input of recognition frame;the recognition system consists of a multi-branch CNN,which analyzes the panoramas as a whole to produce the final recognition result.The experiment results of retrieval and classification on various of3D dataset showed that the performance of our method is better than the state-of-the-art methods,and the retrieval accuracy outperforms that of multi-view method.
作者 冯元力 夏梦 季鹏磊 周潇 曾鸣 刘新国 Feng Yuanli;Xia Meng;Ji Penglei;Zhou Xiao;Zeng Ming;Liu Xinguo(State Key Laboratory of CAD&CG, Zhejiang University, Hangzhou 310058;Software School of Xiamen University, Xiamen 361005)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2017年第9期1689-1695,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61379068)
关键词 卷积神经网络 形状识别 球面投影 全景图 convolutional neural network shape recognition spherical projection panorama
  • 相关文献

参考文献1

二级参考文献31

  • 1Li J B, Sun W H, Wang Y H, et al. 3D model classification based on nonparametric discriminant analysis with kernels [J]. Neural Computing and Applications, 2013, 22 (3/4): 771-781.
  • 2Lti K, He N, Xue J. Content retrieval and classification [J]. based similarity for 3D model Progress in Natural Science, 2009, 19(4): 495-499.
  • 3Knopp J, Prasad M, van Gool L. Orientation invariant 3D object classification using hough transform based methods [C] //Proceedings of the ACM Workshop on 3D Object Retrieval. New York: ACM Press, 2010: 15-20.
  • 4Gao B Y, Zhang S Y, Pan X. Semantic-oriented 3D model classification and retrieva| using Gaussian processes [J]. Journal of Computational Information Systems, 2011, 7 (4) 1029-1037.
  • 5Kassimi A, Elbeqqali O. 3D model classification and retrieval based on semantic and ontology [J]. JCSI International Journal of Computer Science Issues, 2011, 8(5) :108-114.
  • 6Guo J, Zhou M Q, Li C. 3D object classification based on local keywords and hidden Markov model [C]/Proceedings of the 4th International Conference on Digital Manufacturing and Automation. Los Alamitos IEEE Computer Society Press, 2013: 1-4.
  • 7Bronstein M M, Kokkinos I. Scale-invariant heat kernel signatures for non rigid shape recognition [C] //Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2010 1704-1711.
  • 8Ankerst M, Kastenmtiller G, Kriegel H P, et al. 3D shape histograms for similarity search and classification in spatial databases [M] //Lecture Notes in Computer Science. Heidelberg: Springer, 1999, 1651:207-226.
  • 9Tierny J, Vandeborre J P, Daoudi M. 3D mesh skeleton extraction using topological and geometrical analyses [C] /[ Proceedings of the 14th Pacific Conference on Computer Graphics and Applications. Hoboken, N J.- Wiley Press, 2006: 85-94.
  • 10Loffler J. Content-based retrieval of 3D models in distributed Web databases by visual shape information [C] //Proceedings of IEEE International Conference on Information Visualization. Los Alamitos IEEE Computer Society Press, 2000; 82-87.

共引文献6

同被引文献49

引证文献8

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部