期刊文献+

稀疏重构下的非线性调频信号参数估计算法 被引量:2

Parameter Estimation of Nonlinear Frequency Modulated Signal Under the Sparse Reconstruction
下载PDF
导出
摘要 非线性调频信号广泛应用于雷达声纳领域,其具有多阶多项式相位、未知参数多的特点,给参数估计带来困难。针对此问题,本文提出一种稀疏重构下的非线性调频信号参数估计算法。该方法利用Gabor原子良好时频特性,以l1范数稀疏正则最小二乘模型为目标函数,并推导了问题的二阶锥规划(SOCP)形式,最终通过求解的Gabor原子进行参数估计。算法分析信号的时频特征,完成信号的分解重构,适应于各类调频信号。仿真实验证明,本文算法对调频信号二阶与一阶相位参数估计精度都贴近CRB,而对二阶参数的估计较二次相位差分算法更适应较低信噪比。 The nonlinear frequency modulation signal(NLFM)is widely used in the field of radar and sonar.It has the characteristics of multiple order polynomial phase and many unknown parameters,which makes parameter estimation diffi-cult.According to this,a method of Parameter estimation of nonlinear frequency modulated signal under the sparse recon-struction is presented.The method utilizes good time-frequency characteristics of Gabor atoms,uses norm Sparse regular least squares model and deduces the Second Order Cone Programming(SOCP)form of the problem.Finally it estimates parameters with Gabor atoms screened out.The method analyzes the time-frequency characteristics of the signal,completes the decomposition and reconstruction of the signal and suits all kinds of FM signals.Simulation results show that the preci-sion to second order and first order phase parameter of the proposed method is closed to CRB,and is more suitable to low signal-to-noise ratio while compared with second phase difference algorithm.
作者 夏杰 张剑云 周青松 孔辉 XIA Jie;ZHANG Jian-yun;ZHOU Qing-song;KONG Hui(Electronic Engineering Institute,Hefei, Anhui 230037, China)
机构地区 电子工程学院
出处 《信号处理》 CSCD 北大核心 2017年第1期62-68,共7页 Journal of Signal Processing
关键词 基追踪算法 非线性调频信号 时频分析 参数估计 分解重构 basis pursuit nolinear frequency modulation signal time-frequency analysis parameter estimation decomposition and reconstruction
  • 相关文献

参考文献6

二级参考文献59

  • 1赵兴浩,邓兵,陶然.分数阶傅里叶变换数值计算中的量纲归一化[J].北京理工大学学报,2005,25(4):360-364. 被引量:126
  • 2沈显祥,叶瑞青,唐斌,杨建宇.基于欠采样的宽带线性调频信号参数估计[J].电波科学学报,2007,22(1):43-46. 被引量:17
  • 3邓兵,陶然,杨曦.分数阶Fourier域的采样及分辨率分析[J].自然科学进展,2007,17(5):655-661. 被引量:16
  • 4Vinje W E, Gallant J L. Sparse coding and decorrelation in primary visual cortex during natural vision. Science, 2000, 287(5456): 1273-1276
  • 5Olshausen B A, Field D J. Emergency of simple-cell receptive field properties by learning a sparse coding for natural images. Nature, 1996, 381(6583): 607-609
  • 6Olshausen B A, Field D J. Sparse coding with an overcomplete basis set: a strategy employed by VI? Visual Research, 1997, 37(33): 3311-3325
  • 7Mallat S G, Zhang Z F. Matching pursuits with timefrequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415
  • 8Davis G M, Mallat S G, Zhang Z F. Adaptive time-frequency decompositions. SPIE Journal of Optical Engineering, 1994, 33(7): 2183-2191
  • 9Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Journal of Scientific Computing, 1999, 20(1): 33-61
  • 10Gorodnitsky I F, Rao B D. Sparse signal reconstruction from limited data using FOCUSS: are-weighted minimum norm algorithm. IEEE Transactions on Signal Processing, 1997, 45(3): 600-616

共引文献99

同被引文献12

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部