期刊文献+

结合二次Otsu和SIFT的光学和SAR水域图像快速配准 被引量:7

Fast Optical and SAR Water Image Registration Based on Second Otsu and SIFT
下载PDF
导出
摘要 针对光学和SAR图像水域辐射、几何性质差异过大而难以获得共性特征,以及大场景图像配准耗时过长的问题,提出一种基于二次Otsu阈值分割法和尺度不变特征变换法(SIFT)的光学和SAR图像配准方法.首先为了降低数据量,减弱微小目标和噪声带来的干扰,对光学图像和SAR图像进行小波变换;然后针对图像一次Otsu分割后的"过检"现象进行二次分割,获得更准确的水域分割;最后通过改进的空间一致性准则和RANSAC消除初始匹配点中的较多误配.实验结果表明,该方法可以有效地提高光学和SAR图像的配准准确度,加快配准速度. In the optical and synthetic aperture radar(SAR)image registration,the common features are difficultto obtain because of different radiometric and geometric properties.Meanwhile,the large scene images are time-consuming.For solving above problems,a fast optical and SAR water image registration method is proposed based on second Otsu image segmentation and scale-invariant feature transform(SIFT).Firstly,wavelet transform of the optical and SAR image is applied to reduce the amount of data and the interference caused by small targets and noise.Then,in order to solve the problem of“over-inspection”after the Otsu segmentation,the second segmentation is used to achieve more accurate water segmentation.Finally,the mismatch features are eliminated by improving spatial consistency criterion and random sample consensus(RANSAC).The experimental results show that the proposed method can effectively increase the accuracy of optical and SAR image registration and the computation efficiency.
作者 曹哲 张弓 戴为龙 Cao Zhe;Zhang Gong;Dai Weilong(Key Laboratory of Radar Imaging and Microwave Photonics of the Education Ministry, College of Electronic Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2017年第11期1963-1970,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61071163 61271327 61471191) 航空基金(20152052026) 南京航空航天大学研究生创新基地(实验室)开放基金项目(KFJJ20160401)
关键词 合成孔径雷达 光学图像和SAR图像配准 SIFT OTSU synthetic aperture radar optical image and SAR image registration SIFT Otsu
  • 相关文献

参考文献3

二级参考文献24

  • 1陶文兵,刘李漫,田金文,柳健.采用递归门限分析的红外目标分割[J].光电工程,2004,31(10):46-49. 被引量:8
  • 2高贵,匡纲要,李德仁.高分辨率SAR图像分割及目标特征提取[J].宇航学报,2006,27(2):238-244. 被引量:18
  • 3Lee S U,Chung S Y,and Park R H.A comparative performance study of several global thresholding techniques for segmentation[J].Computer Vision,Graphics and Image Processing,1990,52(2):171-190.
  • 4Otsu N.A threshold selection method from gray-level histogram[J].IEEE Transactions on Systems,Man,and Cybernetics,1979,9(1):62-66.
  • 5Daubechies I. Ten Lecture on Wavelets [ M ] . Philadelphia:Society for Industrial and Applied Mathematics, 1992.
  • 6MaUat S G. A theory for multiresolution signal decomposition:The wavelet representation [ J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674--693.
  • 7Gans D. Transformations and Geometries [ M ] . New York:Appleton-Century-Crofts, 1969.
  • 8Arnar Mitiche, Aggarwal J K. Contour registration by shapespecific points for shape matching [ J ] . Computer Vision,Graphics, and Image Processing, 1983, 22(3): 396--408.
  • 9Li H, Manjunath B S. A contour-based approach to multisensor image registration[ J ]. IEEE Transactions on Image Processing,1995, 4(3): 320--334.
  • 10Chao Xu, etl. SAR Detection of Moving Targets Using Approximate Wavelet Transform and Time-Frequency Analysis, IEEE International Symposium on Cireolts and Systems, June, 9,1997 Hong Kong.

共引文献117

同被引文献70

引证文献7

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部