期刊文献+

基于动态特征和静态特征融合的步态识别方法 被引量:7

Gait Recognition Based on Dynamic and Static Feature Fusion
下载PDF
导出
摘要 针对步态识别非强迫性、不易被察觉、难以隐藏和远距离的特点,为了提高步态识别率,提出基于静态能量图和动态群体隐马尔可夫模型的步态识别方法 .首先,对步态图像预处理,计算步态周期,把步态序列中对应关键帧能量图进行叠加;然后,用群体隐马尔可夫模型训练参数,最后用近邻法识别.利用中科院自动化研究所提供的数据库对该方法进行了验证,在90°视角、45°视角下相同的衣着,以及在90°视角下不同衣着三种情形下进行了实验,实验结果验证了该方法的可行性,对角度变化有一定的鲁棒性且减少了噪声对识别的影响. In order to improve the gait recognition rate,this paper proposes a gait recognition method based on static energy map and dynamic population hidden Markov model for the gait recognition of non compulsive,difficult to be perceived,difficult to hide and distant.Firstly,we compute cycle of processed gait image.The corresponding key frame energy map is superimposed on the gait sequence.Then,train parameters using the population hidden Markov mode.At last,the recognition is achieved by nearest neighbor algorithm.The algorithm was validated by the database provided by the institute of Chinese Academy of Sciences,and the experiment was carried out under the90degree angle view,the same clothing under the angle of45degrees,and the different clothing under the90degree angle view.The experimental results show that the method is feasible,which has some robustness to the angle change and reduces the effect of noise on recognition.
作者 赵喜玲 张晓惠 ZHAO Xiling;ZHANG Xiaohui(College of Information Engineering,Xinyang Agriculture and Forestry University, Xinyang 464000;School of Software Engineering,Jiangxi University of Science and Technology,Nanchang 330000 China)
出处 《湘潭大学自然科学学报》 北大核心 2017年第4期89-91,共3页 Natural Science Journal of Xiangtan University
基金 河南省科技攻关基金项目(172102210120)
关键词 步态识别 步态能量图 群体隐马尔可夫模型 特征提取 gait recognition gait energy image population hidden Markov model features extraction
  • 相关文献

参考文献4

二级参考文献37

  • 1杨章静,刘传才,顾兴健,朱俊.依概率分类的保持投影及其在人脸识别中的应用[J].南京理工大学学报,2013,37(1):7-11. 被引量:6
  • 2苏菡,黄凤岗,洪文.一种基于步态分析的身份识别方法[J].系统仿真学报,2006,18(5):1292-1296. 被引量:6
  • 3王科俊,侯本博.步态识别综述[J].中国图象图形学报,2007,12(7):1152-1160. 被引量:44
  • 4Niyogi S, Adelson E. Analyzing Recognizing Walking Figures in XYT[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE Computer Society, 1994: 469-474.
  • 5Kale A, Cuntoor N, Chellappa R. A Framework for Activity Specific Human Identification[C]//Proceedings of International Conference on Acoustics, Speech and Signal Processing. Orlando, USA: IEEE Press, 2002: 3660-3663.
  • 6Cunado D, Nixon M, Carter J. Using Gait as a Biometric, via Phase-weighted Magnitude Spectra[C]//Proceedings of Int'l Conference on Audio and Video-based Biometric Person Authentication. Crans-Montana, Switzerland: [s. n.], 1997: 95-102.
  • 7Elgammal A, Lee C S. Gait Style and Gait Content: Bilinear Model for Gait Recognition Using Gait Resampling[C]//Proceedings of the 6th International Conference on Automatic Face and Gesture Recognition. Seoul, Korea: [s. n.], 2004: 512-520.
  • 8Shtler J D, Nixon M S, Harris C J. Statistical Gait Description via Temporal Moments[C]//Proceedings of the 4th IEEE Southwest Symposium on Image Analysis and Interpretation. [S. 1.]: IEEE Press, 2000: 291-295.
  • 9Yoo J H, Nixon M S, Harris C J. Extracting Human Gait Signatures by Body Segment Properties[C]//Proceedings of IEEE Southwest Symposium on Image Analysis and Interpretation. Southampton, UK: [s. n.], 2002.
  • 10Hotelling H. Analysis of a Complex of Statistical Variables into Principal Components. Journal of Educational Psychology, 1933, 24 (6) : 417-441.

共引文献13

同被引文献56

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部