期刊文献+

An Improved Frag-Shells Algorithm for Data Cube Construction Based on Irrelevance of Data Dispersion

下载PDF
导出
摘要 On-Line Analytical Processing (OLAP) is based on pre-computation of data cubes, which greatly reduces the response time and improves the performance of OLAP. Frag-Shells algorithm is a common method of precomputation.However, it relies too much on the data dispersion that it performs poorly, when confronts large amount of highly disperse data. As the amount of data grows fast nowadays, the efficiency of data cube construction is increasingly becoming a significant bottleneck. In addition, with the popularity of cloud computing and big data, MapReduce framework proposed by Google is playing an increasingly prominent role in parallel processing. It is an intuitive idea that MapReduce framework can be used to enhance the efficiency of parallel data cube construction. In this paper, by improving the Frag-Shells algorithm based on the irrelevance of data dispersion, and taking advantages of the high parallelism of MapReduce framework, we propose an improved Frag-Shells algorithm based on MapReduce framework. The simulation results prove that the proposed algorithm greatly enhances the efficiency of cube construction.
出处 《国际计算机前沿大会会议论文集》 2015年第1期85-86,共2页 International Conference of Pioneering Computer Scientists, Engineers and Educators(ICPCSEE)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部